On convergence of block iterative methods
The Bulletin of Irkutsk State University. Series Mathematics, Tome 5 (2012) no. 3, pp. 41-55
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this work block iterative methods are considered, the convergence of block iterative methods are investigated under fulfillment of block Hadamard conditions and block irreducibility of the matrix.
Keywords: block matrices, block Hadamard criteria, block iterative methods, convergence of block iterative methods.
@article{IIGUM_2012_5_3_a3,
     author = {E. D. Kotina},
     title = {On convergence of block iterative methods},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {41--55},
     year = {2012},
     volume = {5},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2012_5_3_a3/}
}
TY  - JOUR
AU  - E. D. Kotina
TI  - On convergence of block iterative methods
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2012
SP  - 41
EP  - 55
VL  - 5
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2012_5_3_a3/
LA  - ru
ID  - IIGUM_2012_5_3_a3
ER  - 
%0 Journal Article
%A E. D. Kotina
%T On convergence of block iterative methods
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2012
%P 41-55
%V 5
%N 3
%U http://geodesic.mathdoc.fr/item/IIGUM_2012_5_3_a3/
%G ru
%F IIGUM_2012_5_3_a3
E. D. Kotina. On convergence of block iterative methods. The Bulletin of Irkutsk State University. Series Mathematics, Tome 5 (2012) no. 3, pp. 41-55. http://geodesic.mathdoc.fr/item/IIGUM_2012_5_3_a3/

[1] F. R. Gantmakher, Teoriya matrits, Nauka, M., 1967, 575 pp. | MR

[2] Dzh. Golub, Ch. Van Loun, Matrichnye vychisleniya, per. s angl., Mir, M., 1999, 548 pp.

[3] A. Dzhordzh, Dzh. Lyu, Chislennoe reshenie bolshikh razrezhennykh sistem uravnenii, per. s angl., Mir, M., 1984, 333 pp. | MR

[4] Kh. D. Ikramov, “O blochnom analoge svoistva diagonalnogo preobladaniya”, Vestn. Mosk. un-ta. Ser. 15, Vychisl. mat. kibernetika, 1983, no. 4, 52–55 | MR | Zbl

[5] E. D. Kotina, K. M. Maksimov, “Korrektsiya dvizheniya pri tomograficheskikh i planarnykh radionuklidnykh issledovaniyakh”, Vestn. S.-Peterb. un-ta. Ser. 10, Prikladnaya matematika, informatika, protsessy upravleniya, 2011, 29–36

[6] Dzh. Ortega, Vvedenie v parallelnye i vektornye metody resheniya lineinykh sistem, Mir, M., 1991, 367 pp. | MR

[7] Dzh. Rais, Matrichnye vychisleniya i matematicheskoe obespechenie, per. s angl., Mir, M., 1984, 264 pp. | MR

[8] A. A. Samarskii, E. S. Nikolaev, Metody resheniya setochnykh uravnenii, Nauka, M., 1978, 324 pp. | MR

[9] Dzh. Traub, Iteratsionnye metody resheniya uravnenii, Mir, M., 1985, 264 pp. | MR

[10] D. K. Faddeev, V. N. Faddeeva, Vychislitelnye metody lineinoi algebry, M., 1963, 734 pp. | MR

[11] Dzh. Forsait, K. Moler, Chislennoe reshenie sistem lineinykh algebraicheskikh uravnenii, per. s angl., Mir, M., 1969, 167 pp. | MR

[12] L. Kheigeman, D. Yang, Prikladnye iteratsionnye metody, per. s angl., Mir, M., 1986, 446 pp. | MR

[13] R. Khorn, Ch. Dzhonson, Matrichnyi analiz, Mir, M., 1989, 655 pp. | MR

[14] Cheng-Yi Zhang, Shuanghua Luo, Aiqun Huang, Junxiang Lu, “The Eigenvalue Distribution of Block Diagonally Dominant Matrices and Block H-Matrices”, Electronic Journal of Linear Algebra, 20 (2010), 621–639 | MR | Zbl

[15] D. G. Feingold, R. S. Varga, “Block Diagonally Dominant Matrices and Generalizations of the Gerschgorin Circle Theorem”, Pacific Journal of Mathematics, 12 (1962), 1241–1250 | DOI | MR | Zbl

[16] B. K. P. Horn, B. G. Schunck, “Determining optical flow”, Artificial intelligence, 17 (1981), 185–203 | DOI

[17] Y. Saad, Iterative Methods for Sparse Linear Systems, SIAM, Philadelphia, 2003, 552 pp. | MR

[18] Y. Saad, H. A. Vorst, “Iterative solution of linear systems in the 20th century”, Journal of Computational and Applied Mathematics, 12:1–2 (2003), 1–33

[19] O. Taussky, “A Recurring Theorem on Determinants”, Amer. Math. Monthly, 51 (1949), 672–676 | DOI | MR

[20] R. S. Varga, Matrix Iterative Analysis, Springer Series in Computational Mathematics, 2000, 322 pp. | DOI | MR

[21] Wei Zhang, Han Zheng-Zhi, “Bounds for the Spectral Radius of Block H-Matrices”, Electronic Journal of Linear Algebra, 15 (2006), 269–273 | MR | Zbl

[22] D. M. Young, Iterative Methods for Solving Partial Difference Equations of Elliptic Type, Ph. D. Thesis, 1950, 74 pp. | MR

[23] D. M. Young, Iterative Solution of Large Linear Systems, Academic Press, N. Y., 1971, 563 pp. | MR | Zbl