Application of the Seban and Bond Transform and the Cauchy–Kovalevskaya Theorem for one Boundary Layer Problem for Navier–Stocks Equations
The Bulletin of Irkutsk State University. Series Mathematics, Tome 5 (2012) no. 3, pp. 32-40 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Seban and Bond change of variables and the Cauchy–Kovalevskaya theorem are employed for solution to the boundary layer problem derived from the Navier–Stocks equations in the theory of melt spinning process.
Keywords: melt spinning, Navier–Stoks equation.
Mots-clés : PDE
@article{IIGUM_2012_5_3_a2,
     author = {Aliona Dreglea},
     title = {Application of the {Seban} and {Bond} {Transform} and the {Cauchy{\textendash}Kovalevskaya} {Theorem} for one {Boundary} {Layer} {Problem} for {Navier{\textendash}Stocks} {Equations}},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {32--40},
     year = {2012},
     volume = {5},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2012_5_3_a2/}
}
TY  - JOUR
AU  - Aliona Dreglea
TI  - Application of the Seban and Bond Transform and the Cauchy–Kovalevskaya Theorem for one Boundary Layer Problem for Navier–Stocks Equations
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2012
SP  - 32
EP  - 40
VL  - 5
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2012_5_3_a2/
LA  - ru
ID  - IIGUM_2012_5_3_a2
ER  - 
%0 Journal Article
%A Aliona Dreglea
%T Application of the Seban and Bond Transform and the Cauchy–Kovalevskaya Theorem for one Boundary Layer Problem for Navier–Stocks Equations
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2012
%P 32-40
%V 5
%N 3
%U http://geodesic.mathdoc.fr/item/IIGUM_2012_5_3_a2/
%G ru
%F IIGUM_2012_5_3_a2
Aliona Dreglea. Application of the Seban and Bond Transform and the Cauchy–Kovalevskaya Theorem for one Boundary Layer Problem for Navier–Stocks Equations. The Bulletin of Irkutsk State University. Series Mathematics, Tome 5 (2012) no. 3, pp. 32-40. http://geodesic.mathdoc.fr/item/IIGUM_2012_5_3_a2/

[1] A. Dreglya, Kraevye zadachi v modelirovanii formovaniya volokon analiticheskie i chislennye metody, Lambert Academic Publishing GmbH Co. KG, Saarbrucken, 2012, 110 pp.

[2] A. I. Dreglya, “Nekotorye analiticheskie i tochnye resheniya sistem uravnenii v teorii modelirovaniya polimerov”, Sib. zhurn. industr. matematiki, 11 (2008), 61–70 | MR | Zbl

[3] A. I. Dreglya, “O resheniyakh odnoi nelineinoi kraevoi zadachi na poluosi s malym parametrom”, Izv. Irkut. gos. un-ta. Ser. Matematika, 2:1 (2009), 313–316

[4] I. G. Petrovskii, Lektsii ob uravneniyakh s chastnymi proizvodnymi, Nauka, M., 1962 | MR

[5] N. A. Sidorov, R. Yu. Leontev, A. I. Dreglya, “O malykh resheniyakh nelineinykh uravnenii s vektornym parametrom v sektorialnykh okrestnostyakh”, Mat. zametki, 91 (2012), 120–135 | DOI | MR

[6] L. J. Crane, “Heat Transfer on Continuous Solid Surfaces”, Ing. Arch. Bd., 23 (1974), 203–214 | DOI

[7] L. J. Crane, “Boundary Layer Flow on a Circular Cylinder Moving in Fluid at Rest”, Journal of Applied Mathematics and Physics (ZAMP), 23 (1972), 201–212 | DOI | Zbl

[8] A. I. Dreglea, G. I. Shishkin, “Robust Numerical Method Based On Blasius' Approach For Flow Past a Flat Plate in The Case Of Heat Transfer For Large Reynolds Numbers”, Abstracts of the International Conference CMAM-1 (Minsk, Belarus, 2003), 19–20

[9] A. I. Dreglea, G. I. Shishkin, “Robust Numerical Method Based on Blasius Approach for a Flow Past Flat Plate For Large Reinolds Numbers”, Proc. of Irish Soc. Sci. and Eng. Comput. (23–24 May, 2003, Belfield), Ann. Symp., Irish Soc. Sci. and Eng. Comput. Publ., Dublin, 2003, 14

[10] P. A. Farrel, A. F. Hegarty, J. J. H. Miller, G. I. Shishkin, Robust Computational Techniques for Boundary Layers, Chapman and Hall CRC, Florida, USA, 2000, 275 pp. | MR | Zbl

[11] R. A. Saban, R. Bond, “Skin-friction and heat-transfor characteristics of a laminar boundary layer on a cylinder in axial incompressible flow”, J. Aero. Science, 18 (1951), 671 | DOI