The Problem of Spherical Binary Separability
The Bulletin of Irkutsk State University. Series Mathematics, Tome 5 (2012) no. 3, pp. 18-31 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of separation of two sets, whose convex hulls have a nonempty intersection, is considered. Algorithms of local and global search are developed for this. The efficiency of the developed algorithms is demonstrated by computational simulations on test examples.
Keywords: nonsmooth problem; d.c. minimization; global optimality conditions; local search; global search algorithm.
@article{IIGUM_2012_5_3_a1,
     author = {T. V. Gruzdeva},
     title = {The {Problem} of {Spherical} {Binary} {Separability}},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {18--31},
     year = {2012},
     volume = {5},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2012_5_3_a1/}
}
TY  - JOUR
AU  - T. V. Gruzdeva
TI  - The Problem of Spherical Binary Separability
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2012
SP  - 18
EP  - 31
VL  - 5
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2012_5_3_a1/
LA  - ru
ID  - IIGUM_2012_5_3_a1
ER  - 
%0 Journal Article
%A T. V. Gruzdeva
%T The Problem of Spherical Binary Separability
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2012
%P 18-31
%V 5
%N 3
%U http://geodesic.mathdoc.fr/item/IIGUM_2012_5_3_a1/
%G ru
%F IIGUM_2012_5_3_a1
T. V. Gruzdeva. The Problem of Spherical Binary Separability. The Bulletin of Irkutsk State University. Series Mathematics, Tome 5 (2012) no. 3, pp. 18-31. http://geodesic.mathdoc.fr/item/IIGUM_2012_5_3_a1/

[1] A. D. Aleksandrov, “Poverkhnosti, predstavimye raznostyami vypuklykh funktsii”, Dokl. AN SSSP, 72:4 (1950), 613–616 | MR | Zbl

[2] F. P. Vasilev, Metody optimizatsii, Faktorial-press, M., 2002

[3] T. V. Gruzdeva, A. S. Strekalovskii, “Lokalnyi poisk v zadachakh s nevypuklymi ogranicheniyami”, ZhVMMF, 47:3 (2007), 397–413 | MR | Zbl

[4] V. F. Demyanov, L. V. Vasilev, Nedifferentsiruemaya optimizatsiya, Nauka, M., 1981 | MR

[5] I. I. Eremin, Teoriya lineinoi optimizatsii, Izd-vo IMM UrO RAN, Ekaterinburg, 1999

[6] I. I. Eremin, Protivorechivye modeli optimalnogo planirovaniya, Nauka, M., 1988 | MR

[7] I. I. Eremin, Vl. D. Mazurov, V. D. Skarin, M. Yu. Khachai, Matematicheskie metody v ekonomike, UrGU-Tsentr «Faktoriya Press», Ekaterinburg, 2000

[8] A. F. Izmailov, M. F. Solodov, Chislennye metody optimizatsii, Fizmatlit, M., 2005 | Zbl

[9] V. D. Mazurov, “Raspoznavanie obrazov kak sredstvo avtomaticheskogo vybora protsedury v vychislitelnykh metodakh”, ZhVMMF, 10:6 (1970), 1520–1525 | MR

[10] V. D. Mazurov, M. Yu. Khachai, “Komitetnye konstruktsii”, Izv. UrGU. Matematika i mekhanika, 1999, no. 2(14), 77–108 | MR | Zbl

[11] V. S. Mikhalevich, V. A. Trubin, N. Z. Shor, Optimizatsionnye zadachi proizvodstvenno-transportnogo planirovaniya, Nauka. Gl. red. fiz.-mat. lit., M., 1986 | MR

[12] A. V. Orlov, “Chislennoe reshenie zadach bilineinogo programmirovaniya”, ZhVMMF, 48:2 (2008), 237–254 | MR | Zbl

[13] B. T. Polyak, Vvedenie v optimizatsiyu, Nauka. Gl. red. fiz.-mat. lit., M., 1983 | MR

[14] B. N. Pshenichnyi, Vypuklyi analiz i ekstremalnye zadachi, Nauka. Gl. red. fiz.-mat. lit., M., 1980 | MR | Zbl

[15] A. S. Strekalovskii, Elementy nevypukloi optimizatsii, Nauka, Novosibirsk, 2003

[16] A. S. Strekalovskii, “O minimizatsii raznosti dvukh vypuklykh funktsii na dopustimom mnozhestve”, ZhVMMF, 43:3 (2003), 399–409 | MR | Zbl

[17] N. Z. Shor, Metody minimizatsii nedifferentsiruemykh funktsii i ikh prilozheniya, Naukova dumka, Kiev, 1979 | MR | Zbl

[18] N. Z. Shor, “Monotonnye modifikatsii $r$-algoritmov i ikh prilozheniya”, Kibernetika i sistem. analiz, 2002, no. 6, 74–95 | MR

[19] A. Astorino, A. Fuduli, M. Gaudioso, “DC models for spherical separation”, Journal of Global Optimization, 48:4 (2010), 657–669 | DOI | MR | Zbl

[20] A. Astorino, M. Gaudioso, “A fixed-center spherical separation algorithm with kernel transformations for classification problems”, Computational Management Science, 2009, no. 6, 357–372 | DOI | MR | Zbl

[21] A. Astorino, M. Gaudioso, “Polyhedral Separability Through Successive LP”, Journal of Optimization theory and applications, 112:2 (2002), 265–293 | DOI | MR | Zbl

[22] A. Ben-Tal, A. Nemirovski, “Non-Euclidean restricted memory level method for large-scale convex optimization”, Mathematical Programming, 102:3 (2005), 407–456 | DOI | MR | Zbl

[23] O. Chapelle, A. Zien, “Semi-supervised classification by low density separation”, Proceedings of the tenth international workshop on artificial intelligence and statistics (2005), 57–64

[24] D. M. J. Tax, R. P. W. Duin, “Uniform object generation for optimizing one-class classifiers”, The Journal of Machine Learning Research, 2 (2002), 155–173 | Zbl

[25] J.-B. Hiriart-Urruty, C. Lemarshal, Convex Analysis and Minimization Algorithms, Springer-Verlag, Berlin, 1993

[26] R. Horst, P. Pardalos, N. V. Thoai, Introduction to global optimization, Kluwer Academic Publishers, Dordrecht–Boston-London, 1995 | MR

[27] R. Horst, N. V. Thoai, “Programming: Overview”, Journal of Optimization Theory and Applications, 103:1 (1999), 1–43 | DOI | MR

[28] O. L. Mangasarian, “Linear and Nonlinear Separation of Patterns by Linear Programming”, Operations Research, 1965, no. 13, 444–452 | DOI | MR | Zbl

[29] P. M. Murphy, D. W. Aha, UCI repository of machine learning databases, , 1992 http://www.ics.uci.edu/m̃learn/MLRepository.html

[30] J. Nocedal, S. Wright, Numerical optimization, Springer-Verlag, N.Y., 1999 | MR | Zbl

[31] S. Odewahn, E. Stockwell, R. Pennington, R. Humphreys, W. Zumach, “Automated star/galaxy discrimination with neural networks”, Astron. J., 103 (1992), 318–331 | DOI

[32] A. S. Strekalovsky, “On local search in d.c. optimization problems”, Optimization Letters, 2011 (to appear)

[33] A. S. Strekalovsky, A. V. Orlov, A. V. Malyshev, “On computational search for optimistic solutions in bilevel problems”, Journal of Global Optimization, 48:1 (2010), 159–172 | DOI | MR | Zbl

[34] P. D. Tao, L. B. Souad, “Algorithms for solving a class of non convex optimization. Methods of subgradients”, Fermat Days 85, Mathematics for Optimization, ed. Hiriart-Urruty J.-B., Elservier Sience Publishers B. V., North Holland, 1986, 249–271 | DOI | MR