Integro-differential equations with Fredholm operator by the derivative of the higest order in Banach spaces and it's applications
The Bulletin of Irkutsk State University. Series Mathematics, Tome 5 (2012) no. 2, pp. 90-102 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper the Cauchy problem for integro-differential equation in Banach spaces with Fredholm operator in main part is investigated by the methods of the theory of fundamental operator-functions. The fundamental operator-function is constructed, and constructiv formula for the generalized solution in the class of distributions with left-bounded support is obtained. The conditions for the coincidence of classical and generalized solutions are described. The abstract results are illustrated by examples of the Cauchy problem for a system of integro-differential equations of two-contour circuit and the Cauchy–Dirichlet problem of the mathematical theory of viscoelasticity.
Keywords: Banach spaces, generalized function, Fredholm operator, fundamental operator-function.
Mots-clés : Jordan set
@article{IIGUM_2012_5_2_a8,
     author = {M. V. Falaleev},
     title = {Integro-differential equations with {Fredholm} operator by the derivative of the higest order in {Banach} spaces and it's applications},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {90--102},
     year = {2012},
     volume = {5},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2012_5_2_a8/}
}
TY  - JOUR
AU  - M. V. Falaleev
TI  - Integro-differential equations with Fredholm operator by the derivative of the higest order in Banach spaces and it's applications
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2012
SP  - 90
EP  - 102
VL  - 5
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2012_5_2_a8/
LA  - ru
ID  - IIGUM_2012_5_2_a8
ER  - 
%0 Journal Article
%A M. V. Falaleev
%T Integro-differential equations with Fredholm operator by the derivative of the higest order in Banach spaces and it's applications
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2012
%P 90-102
%V 5
%N 2
%U http://geodesic.mathdoc.fr/item/IIGUM_2012_5_2_a8/
%G ru
%F IIGUM_2012_5_2_a8
M. V. Falaleev. Integro-differential equations with Fredholm operator by the derivative of the higest order in Banach spaces and it's applications. The Bulletin of Irkutsk State University. Series Mathematics, Tome 5 (2012) no. 2, pp. 90-102. http://geodesic.mathdoc.fr/item/IIGUM_2012_5_2_a8/

[1] M. M. Vainberg, V. A. Trenogin, Teoriya vetvleniya reshenii nelineinykh uravnenii, Nauka, M., 1969, 528 pp. | MR

[2] V. S. Vladimirov, Obobschennye funktsii v matematicheskoi fizike, Nauka, M., 1979, 320 pp. | MR

[3] B. V. Loginov, Yu. B. Rusak, “Obobschennye zhordanovy struktury v teorii vetvleniya”, Pryamye i obratnye zadachi dlya differentsialnykh uravnenii v chastnykh proizvodnykh i ikh prilozheniya, FAN, Tashkent, 1978, 139–148 | MR

[4] E. I. Ushakov, Staticheskaya ustoichivost elektricheskikh sistem, Nauka, Novosibirsk, 1988, 273 pp. | Zbl

[5] M. V. Falaleev, S. S. Orlov, “Vyrozhdennye integro-differentsialnye operatory v banakhovykh prostranstvakh i ikh prilozheniya”, Izv. vuzov. Matematika, 2011, no. 10, 68–79 | MR | Zbl

[6] M. V. Falaleev, S. S. Orlov, “Integro-differentsialnye uravneniya s vyrozhdeniem v banakhovykh prostranstvakh i ikh prilozheniya v matematicheskoi teorii uprugosti”, Izv. Irkut. gos. un-ta. Ser. Matematika, 4:1 (2011), 118–134 | Zbl

[7] M. V. Falaleev, S. S. Orlov, “Nachalno-kraevye zadachi dlya integro-differentsialnykh uravnenii vyazkouprugosti”, Obozrenie prikl. i prom. matematiki, 17:4 (2010), 597–600 | MR

[8] M. V. Falaleev, S. S. Orlov, “Vyrozhdennye integro-differentsialnye uravneniya spetsialnogo vida v banakhovykh prostranstvakh i ikh prilozheniya”, Vestn. YuUrGU. Ser. Mat. modelirovanie i programmirovanie, 2011, no. 4(211), Vyp. 7, 100–110 | Zbl

[9] M. V. Falaleev, “Fundamentalnye operator-funktsii singulyarnykh differentsialnykh operatorov v banakhovykh prostranstvakh”, Sib. mat. zhurn., 41:5 (2000), 1167–1182 | MR | Zbl

[10] M. V. Falaleev, E. Yu. Grazhdantseva, “Fundamentalnye operator-funktsii vyrozhdennykh differentsialnykh i differentsialno-raznostnykh operatorov s neterovym operatorom v glavnoi chasti v banakhovykh prostranstvakh”, Sib. mat. zhurn., 46:6 (2005), 1393–1406 | MR | Zbl

[11] M. V. Falaleev, E. Yu. Grazhdantseva, “Fundamentalnye operator-funktsii singulyarnykh differentsialnykh operatorov v usloviyakh spektralnoi ogranichennosti”, Differents. uravneniya, 42:6 (2006), 769–774 | MR | Zbl

[12] M. V. Falaleev, “Fundamentalnye operator-funktsii singulyarnykh differentsialnykh operatorov v usloviyakh sektorialnosti i radialnosti”, Izv. vuzov. Matematika, 2006, no. 10, 68–75 | MR

[13] M. M. Cavalcanti, V. N. Domingos Cavalcanti, J. Ferreira, “Existence and Uniform Decay for a Non-Linear Viscoelastic Equation with Strong Damping”, Math. Meth. Appl. Sci., 24 (2001), 1043–1053 | DOI | MR | Zbl

[14] M. V. Falaleev, “The theory of fundamental operator-functions of degenerative integro-differential operators in Banach spaces”, 50 years of IPPI, Proceedings International Mathematical Conference (2011), 6 pp.

[15] N. Sidorov, B. Loginov, A. Sinitsyn, M. Falaleev, Lyapunov–Schmidt Methods in Nonlinear Analysis and Applications, Kluwer Academic Publ., Dordrecht, 2002, 548 pp. | MR | Zbl

[16] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev-Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht–Boston–Köln–Tokyo, 2003 | MR | Zbl