Mots-clés : Rzhanitsyn's kernel
@article{IIGUM_2012_5_2_a6,
author = {A. N. Tynda and A. E. Romanov},
title = {Numerical solution of nonlinear {Volterra} integral equations with fractionally-exponential kernels of rheological models of viscoelastic continuum},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {69--80},
year = {2012},
volume = {5},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2012_5_2_a6/}
}
TY - JOUR AU - A. N. Tynda AU - A. E. Romanov TI - Numerical solution of nonlinear Volterra integral equations with fractionally-exponential kernels of rheological models of viscoelastic continuum JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2012 SP - 69 EP - 80 VL - 5 IS - 2 UR - http://geodesic.mathdoc.fr/item/IIGUM_2012_5_2_a6/ LA - ru ID - IIGUM_2012_5_2_a6 ER -
%0 Journal Article %A A. N. Tynda %A A. E. Romanov %T Numerical solution of nonlinear Volterra integral equations with fractionally-exponential kernels of rheological models of viscoelastic continuum %J The Bulletin of Irkutsk State University. Series Mathematics %D 2012 %P 69-80 %V 5 %N 2 %U http://geodesic.mathdoc.fr/item/IIGUM_2012_5_2_a6/ %G ru %F IIGUM_2012_5_2_a6
A. N. Tynda; A. E. Romanov. Numerical solution of nonlinear Volterra integral equations with fractionally-exponential kernels of rheological models of viscoelastic continuum. The Bulletin of Irkutsk State University. Series Mathematics, Tome 5 (2012) no. 2, pp. 69-80. http://geodesic.mathdoc.fr/item/IIGUM_2012_5_2_a6/
[1] V. M. Aleksandrov, M. I. Chebakov, Analiticheskie metody v kontaktnykh zadachakh teorii uprugosti, Fizmatlit, M., 2004, 304 pp.
[2] I. V. Boikov, “Nekotorye voprosy priblizhennogo resheniya nelineinykh operatornykh uravnenii metodom Nyutona–Kantorovicha”, Sb. aspirant. rabot. Tochnye nauki, Izd-vo Kazan. gos. un-ta, Kazan, 1970, 82–94
[3] I. V. Boikov, A. N. Tynda, “Optimalnye po tochnosti priblizhennye metody resheniya integralnykh uravnenii Volterra”, Differents. uravneniya, 38:9 (2002), 1225–1232 | MR
[4] S. S. Vyalov, Reologicheskie osnovy mekhaniki gruntov, Vyssh. shk., M., 1978, 447 pp.
[5] L. V. Kantorovich, G. P. Akilov, Funktsionalnyi analiz, Nauka, M., 1979, 744 pp. | MR
[6] M. A. Koltunov, Polzuchest i relaksatsiya, Vyssh. shk., M., 1976, 277 pp.
[7] A. Ya. Malkin, A. I. Isaev, Reologiya: kontseptsii, metody, prilozheniya, Professiya, SPb., 2007, 560 pp.
[8] S. R. Meschyan, Eksperimentalnaya reologiya glinistykh gruntov, Nedra, M., 1985, 342 pp.
[9] A. R. Rzhanitsyn, Teoriya polzuchesti, Stroiizdat, M., 1968, 418 pp.
[10] A. N. Tynda, “Smeshannyi splain-kollokatsionnyi metod resheniya slabosingulyarnykh integralnykh uravnenii Volterra”, Tr. SVMO, 7:1 (2005), 351–358
[11] H. Brunner, Collocation methods for Volterra integral and related functional differential equations, Cambridge University Press, Cambridge, 2004 | MR | Zbl
[12] H. Brunner, A. Pedas, G. Vainikko, “The piecewise polynomial collocation method for nonlinear weakly singular Volterra equation”, Math. Comp., 68:227 (1999), 1079–1095 | DOI | MR | Zbl
[13] T. Diogo, P. Lima, M. Rebelo, “Numerical solution of a nonlinear Abel type Volterra integral equation”, Commun. Pure Appl. Analysis, 5 (2006), 277–288 | DOI | MR | Zbl
[14] T. Diogo, S. McKee, T. Tang, “Collocation methods for second-kind Volterra integral equations with weakly singular kernels”, Proc. Roy. Soc. Edin., 124A (1994), 199–210 | DOI | MR | Zbl
[15] A. N. Tynda, “On Numerical Solution of a Nonlinear Volterra Integral Equation of Fractional Order”, Tr. SVMO, 11:1 (2009), 71–79
[16] A. N. Tynda, “Numerical algorithms of optimal complexity for weakly singular Volterra integral equations”, Computational Methods in Applied Mathematics, 6:4 (2006), 436–442 | DOI | MR | Zbl