Numerical solution of nonlinear Volterra integral equations with fractionally-exponential kernels of rheological models of viscoelastic continuum
The Bulletin of Irkutsk State University. Series Mathematics, Tome 5 (2012) no. 2, pp. 69-80
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper is devoted to numerical treatment of rheological models in the context of nonlinear heritable creep theory. An approximate method for nonlinear weakly singular Volterra integral equations with Rzhanitsyn's kernel used in rheological models of viscoelastic continuum is suggested. In conclusion we adduce some numerical results demonstrating the convergence of this method and describing the deformation of loamy soil.
Keywords: Nonlinear Volterra integral equations, viscoelasticity, Newton–Kantorovich method.
Mots-clés : Rzhanitsyn's kernel
@article{IIGUM_2012_5_2_a6,
     author = {A. N. Tynda and A. E. Romanov},
     title = {Numerical solution of nonlinear {Volterra} integral equations with fractionally-exponential kernels of rheological models of viscoelastic continuum},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {69--80},
     year = {2012},
     volume = {5},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2012_5_2_a6/}
}
TY  - JOUR
AU  - A. N. Tynda
AU  - A. E. Romanov
TI  - Numerical solution of nonlinear Volterra integral equations with fractionally-exponential kernels of rheological models of viscoelastic continuum
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2012
SP  - 69
EP  - 80
VL  - 5
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2012_5_2_a6/
LA  - ru
ID  - IIGUM_2012_5_2_a6
ER  - 
%0 Journal Article
%A A. N. Tynda
%A A. E. Romanov
%T Numerical solution of nonlinear Volterra integral equations with fractionally-exponential kernels of rheological models of viscoelastic continuum
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2012
%P 69-80
%V 5
%N 2
%U http://geodesic.mathdoc.fr/item/IIGUM_2012_5_2_a6/
%G ru
%F IIGUM_2012_5_2_a6
A. N. Tynda; A. E. Romanov. Numerical solution of nonlinear Volterra integral equations with fractionally-exponential kernels of rheological models of viscoelastic continuum. The Bulletin of Irkutsk State University. Series Mathematics, Tome 5 (2012) no. 2, pp. 69-80. http://geodesic.mathdoc.fr/item/IIGUM_2012_5_2_a6/

[1] V. M. Aleksandrov, M. I. Chebakov, Analiticheskie metody v kontaktnykh zadachakh teorii uprugosti, Fizmatlit, M., 2004, 304 pp.

[2] I. V. Boikov, “Nekotorye voprosy priblizhennogo resheniya nelineinykh operatornykh uravnenii metodom Nyutona–Kantorovicha”, Sb. aspirant. rabot. Tochnye nauki, Izd-vo Kazan. gos. un-ta, Kazan, 1970, 82–94

[3] I. V. Boikov, A. N. Tynda, “Optimalnye po tochnosti priblizhennye metody resheniya integralnykh uravnenii Volterra”, Differents. uravneniya, 38:9 (2002), 1225–1232 | MR

[4] S. S. Vyalov, Reologicheskie osnovy mekhaniki gruntov, Vyssh. shk., M., 1978, 447 pp.

[5] L. V. Kantorovich, G. P. Akilov, Funktsionalnyi analiz, Nauka, M., 1979, 744 pp. | MR

[6] M. A. Koltunov, Polzuchest i relaksatsiya, Vyssh. shk., M., 1976, 277 pp.

[7] A. Ya. Malkin, A. I. Isaev, Reologiya: kontseptsii, metody, prilozheniya, Professiya, SPb., 2007, 560 pp.

[8] S. R. Meschyan, Eksperimentalnaya reologiya glinistykh gruntov, Nedra, M., 1985, 342 pp.

[9] A. R. Rzhanitsyn, Teoriya polzuchesti, Stroiizdat, M., 1968, 418 pp.

[10] A. N. Tynda, “Smeshannyi splain-kollokatsionnyi metod resheniya slabosingulyarnykh integralnykh uravnenii Volterra”, Tr. SVMO, 7:1 (2005), 351–358

[11] H. Brunner, Collocation methods for Volterra integral and related functional differential equations, Cambridge University Press, Cambridge, 2004 | MR | Zbl

[12] H. Brunner, A. Pedas, G. Vainikko, “The piecewise polynomial collocation method for nonlinear weakly singular Volterra equation”, Math. Comp., 68:227 (1999), 1079–1095 | DOI | MR | Zbl

[13] T. Diogo, P. Lima, M. Rebelo, “Numerical solution of a nonlinear Abel type Volterra integral equation”, Commun. Pure Appl. Analysis, 5 (2006), 277–288 | DOI | MR | Zbl

[14] T. Diogo, S. McKee, T. Tang, “Collocation methods for second-kind Volterra integral equations with weakly singular kernels”, Proc. Roy. Soc. Edin., 124A (1994), 199–210 | DOI | MR | Zbl

[15] A. N. Tynda, “On Numerical Solution of a Nonlinear Volterra Integral Equation of Fractional Order”, Tr. SVMO, 11:1 (2009), 71–79

[16] A. N. Tynda, “Numerical algorithms of optimal complexity for weakly singular Volterra integral equations”, Computational Methods in Applied Mathematics, 6:4 (2006), 436–442 | DOI | MR | Zbl