Volterra Integral Equations of the First Kind with Piecewise Continuous Kernels in the Theory of Evolving Systems Modeling
The Bulletin of Irkutsk State University. Series Mathematics, Tome 5 (2012) no. 2, pp. 31-45 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The method for solution to the Volterra integral equations of the first kind is proposed. Such equations appear in the theory of developing systems and they have kernels with discontinuities of the first kind. We construct the characteristic algebraic equation. Analytically and numerically we study the regular case when characteristic equation has no positive roots and the solution to the integral equation is unique. In the case of irregular characteristic equation has natural roots, and the solution contains arbitrary constants. We prove existence theorems and construct their asymptotics. The theoretical results are illustrated by numerical calculations.
Keywords: Volterra integral equation of the first kind; Glushkov model; evolving systems; step method; asymptotics; numerical methods.
@article{IIGUM_2012_5_2_a2,
     author = {E. V. Markova and D. N. Sidorov},
     title = {Volterra {Integral} {Equations} of the {First} {Kind} with {Piecewise} {Continuous} {Kernels} in the {Theory} of {Evolving} {Systems} {Modeling}},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {31--45},
     year = {2012},
     volume = {5},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2012_5_2_a2/}
}
TY  - JOUR
AU  - E. V. Markova
AU  - D. N. Sidorov
TI  - Volterra Integral Equations of the First Kind with Piecewise Continuous Kernels in the Theory of Evolving Systems Modeling
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2012
SP  - 31
EP  - 45
VL  - 5
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2012_5_2_a2/
LA  - ru
ID  - IIGUM_2012_5_2_a2
ER  - 
%0 Journal Article
%A E. V. Markova
%A D. N. Sidorov
%T Volterra Integral Equations of the First Kind with Piecewise Continuous Kernels in the Theory of Evolving Systems Modeling
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2012
%P 31-45
%V 5
%N 2
%U http://geodesic.mathdoc.fr/item/IIGUM_2012_5_2_a2/
%G ru
%F IIGUM_2012_5_2_a2
E. V. Markova; D. N. Sidorov. Volterra Integral Equations of the First Kind with Piecewise Continuous Kernels in the Theory of Evolving Systems Modeling. The Bulletin of Irkutsk State University. Series Mathematics, Tome 5 (2012) no. 2, pp. 31-45. http://geodesic.mathdoc.fr/item/IIGUM_2012_5_2_a2/

[1] A. S. Apartsin, Neklassicheskie uravneniya Volterra pervogo roda: teoriya i chislennye metody, Nauka, Novosibirsk, 1999, 193 pp.

[2] G. I. Arkhipov, V. A. Sadovnichii, V. N. Chubarikov, Lektsii po matematicheskomu analizu, Vyssh. shk., M., 1999, 695 pp.

[3] N. A. Magnitskii, “Asimptotika reshenii integralnogo uravneniya Volterry pervogo roda”, DAN SSSR, 269:1 (1983), 29–32 | MR

[4] E. V. Markova, Chislennye metody resheniya neklassicheskikh lineinykh uravnenii Volterra I roda i ikh prilozheniya, dis. ... kand. fiz.-mat. nauk, Irkutsk, 1999, 100 pp.

[5] E. V. Markova, I. V. Sidler, V. V. Trufanov, “O modelyakh razvivayuschikhsya sistem tipa Glushkova i ikh prilozheniyakh v elektroenergetike”, Avtomatika i telemekhanika, 2011, no. 7, 20–28 | MR | Zbl

[6] D. N. Sidorov, “O razreshimosti uravnenii Volterra I roda s kusochno-nepreryvnymi yadrami v klasse obobschennykh funktsii”, Izv. Irkut. gos. un-ta. Ser. Matematika, 5:1 (2012), 80–95 | Zbl

[7] V. A. Trenogin, Funktsionalnyi analiz, Fizmatlit, M., 2007, 488 pp.

[8] A. P. Khromov, “Integralnye operatory s yadrami, razryvnymi na lomanykh liniyakh”, Mat. sb., 197:11 (2006), 115–142 | DOI | MR | Zbl

[9] L. A. Elsgolts, Kachestvennye metody v matematicheskom analize, GITTL, M., 1955, 300 pp. | MR

[10] H. Brunner, “1896–1996: One hundred years of Volterra integral equations of the first kind”, Applied Numerical Mathematis, 24 (1997), 83–93 | DOI | MR | Zbl

[11] G. C. Evans, “Volterra's Integral Equation of the Second Kind with Discontinuous Kernel”, Transactions of the American Mathematical Society, 11:4 (1910), 393–413 | MR | Zbl

[12] N. Hritonenko, Yu. Yatsenko, Applied mathematical modelling of engineering problems, Kluwer Academic Publishers, Dordrecht, 2003, 308 pp. | MR | Zbl

[13] D. Sidorov, “Volterra Equations of the First kind with Discontinuous Kernels in the Theory of Evolving Systems Control”, Studia Informatica Universalis, 9:3 (2011), 135–146 | MR