Solution to the Volterra equations of the 1st kind with discontinuous kernels in the class of generalized functions
The Bulletin of Irkutsk State University. Series Mathematics, Tome 5 (2012) no. 1, pp. 80-95 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Sufficient conditions for existence and uniqueness of solutions of the equations of Volterra equation of the 1st kind with a piecewise continuous kernels in the class of generalized functions with point support are derived. An asymptotic approximation of a parametric family of generalized solutions is constructed. A method of the regular part of the solution’s improvement employs the method of successive approximations.
Keywords: Volterra integral equations; discontinuous kernel; generalized solution; successive approximations.
@article{IIGUM_2012_5_1_a7,
     author = {D. N. Sidorov},
     title = {Solution to the {Volterra} equations of the 1st kind with discontinuous kernels in the class of generalized functions},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {80--95},
     year = {2012},
     volume = {5},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2012_5_1_a7/}
}
TY  - JOUR
AU  - D. N. Sidorov
TI  - Solution to the Volterra equations of the 1st kind with discontinuous kernels in the class of generalized functions
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2012
SP  - 80
EP  - 95
VL  - 5
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2012_5_1_a7/
LA  - ru
ID  - IIGUM_2012_5_1_a7
ER  - 
%0 Journal Article
%A D. N. Sidorov
%T Solution to the Volterra equations of the 1st kind with discontinuous kernels in the class of generalized functions
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2012
%P 80-95
%V 5
%N 1
%U http://geodesic.mathdoc.fr/item/IIGUM_2012_5_1_a7/
%G ru
%F IIGUM_2012_5_1_a7
D. N. Sidorov. Solution to the Volterra equations of the 1st kind with discontinuous kernels in the class of generalized functions. The Bulletin of Irkutsk State University. Series Mathematics, Tome 5 (2012) no. 1, pp. 80-95. http://geodesic.mathdoc.fr/item/IIGUM_2012_5_1_a7/

[1] Apartsin A. S., Neklassicheskie uravneniya Volterra I roda: teoriya i chislennye metody, Nauka, Novosibirsk, 1999

[2] M. M. Vainberg, V. A. Trenogin, Teoriya vetvleniya reshenii nelineinykh uravnenii, Nauka, M., 1969 | MR

[3] V. S. Vladimirov, Obobschennye funktsii v matematicheskoi fizike, Nauka. Fizmatlit, M., 1976 | MR | Zbl

[4] A. O. Gelfond, Ischislenie konechnykh raznostei, Fizmatlit, M., 1959 | MR

[5] N. A. Magnitskii, “Asimptotika reshenii integralnogo uravneniya Volterry pervogo roda”, DAN SSSR, 269:1 (1983), 29–32 | MR

[6] E. V. Markova, I. V. Sidler, V. V. Trufanov, “O modelyakh razvivayuschikhsya sistem tipa Glushkova i ikh prilozheniyakh v elektroenergetike”, Avtomatika i telemekhanika, 2011, no. 7, 20–28 | MR | Zbl

[7] N. A. Sidorov, A. V. Trufanov, “Nelineinye operatornye uravneniya s funktsionalno vozmuschennym argumentom neitralnogo tipa”, Differents. uravneniya, 45:12 (2009), 1804–1808 | MR | Zbl

[8] N. A. Sidorov, D. N. Sidorov, “O malykh resheniyakh nelineinykh differentsialnykh uravnenii v okrestnosti tochek vetvleniya”, Izv. vuzov. Matematika, 2011, no. 5, 53–61 | MR | Zbl

[9] N. A. Sidorov, D. N. Sidorov, “Suschestvovanie i postroenie obobschennykh reshenii integralnykh uravnenii Volterry pervogo roda”, Differents. uravneniya, 42:9 (2006), 1243–1242 | MR

[10] N. A. Sidorov, D. N. Sidorov, A. V. Krasnik, “O reshenii operatorno-integralnykh uravnenii Volterry v neregulyarnom sluchae metodom posledovatelnykh priblizhenii”, Differents. uravneniya, 40:6 (2010), 874–882 | MR

[11] D. H. Sidorov, N. A. Sidorov, “Obobschennye resheniya v zadache modelirovaniya nelineinykh dinamicheskikh sistem polinomami Volterra”, Avtomatika i telemekhanika, 2011, no. 6, 127–132 | MR | Zbl

[12] V. A. Trenogin, Funktsionalnyi analiz, Nauka, M., 1993, 439 pp. | MR | Zbl

[13] L. E. Elsgolts, Kachestvennye metody v matematicheskom analize, GITTL, M., 1955

[14] Yu. P. Yatsenko, Integralnye modeli sistem s upravlyaemoi pamyatyu, Naukova dumka, Kiev, 1991 | MR | Zbl

[15] A. M. Denisov, A. Lorenzi, “On a special Volterra integral equation of the first kind”, Boll. Un. Mat. Ital. B. Vol., 7:9 (1995), 443–457 | MR

[16] D. Sidorov, “Volterra Equations of the First kind with Discontinuous Kernels in the Theory of Evolving Systems Control”, Studia Informatica Universalis, 9:3 (2011), 135–146 | MR

[17] D. N. Sidorov, N. A. Sidorov, “Convex majorants method in the theory of nonlinear Volterra equations”, Banach J. Math. Anal., 6:1 (2012), 1–10 | DOI | MR | Zbl

[18] N. Sidorov, B. Loginov, A. Sinitsyn, M. Falaleev, Lyapunov–Schmidt Methods in Nonlinear Analysis and Applications, Kluwer Academic Publisher, Dordrecht–Boston–London, 2002, 568 pp. | MR | Zbl

[19] D. Sidorov, “On impulsive control of nonlinear dynamical systems based on the Volterra series”, 10th IEEE International Conference on Environment and Electrical Engineering, EEEIC (8–11 May 2011, Rome, Italy), 2011, 1–6