Representing the models by the finite trees
The Bulletin of Irkutsk State University. Series Mathematics, Tome 5 (2012) no. 1, pp. 48-56
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the article the apparatus of the finite formula trees for algebra-logical models is designed. The apparatus represents the elementary equivalency and decidability of the models.
Keywords: first order theories; models; elementary equivalency; decidability.
@article{IIGUM_2012_5_1_a4,
     author = {Yu. D. Korolkov},
     title = {Representing the models by the finite trees},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {48--56},
     year = {2012},
     volume = {5},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2012_5_1_a4/}
}
TY  - JOUR
AU  - Yu. D. Korolkov
TI  - Representing the models by the finite trees
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2012
SP  - 48
EP  - 56
VL  - 5
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2012_5_1_a4/
LA  - ru
ID  - IIGUM_2012_5_1_a4
ER  - 
%0 Journal Article
%A Yu. D. Korolkov
%T Representing the models by the finite trees
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2012
%P 48-56
%V 5
%N 1
%U http://geodesic.mathdoc.fr/item/IIGUM_2012_5_1_a4/
%G ru
%F IIGUM_2012_5_1_a4
Yu. D. Korolkov. Representing the models by the finite trees. The Bulletin of Irkutsk State University. Series Mathematics, Tome 5 (2012) no. 1, pp. 48-56. http://geodesic.mathdoc.fr/item/IIGUM_2012_5_1_a4/

[1] Yu. L. Ershov, Problemy razreshimosti i konstruktivnye modeli, Nauka, M., 1980, 416 pp. | MR

[2] Yu. L. Ershov, “Yazyk $\Sigma$-vyrazhenii”, Vychisl. sistemy, 114, Novosibirsk, 1986, 3–10 | MR | Zbl

[3] Yu. L. Ershov, Opredelimost i vychislimost, Nauch. kn., Novosibirsk, 1996, 286 pp. | MR | Zbl

[4] Yu. D. Korolkov, “Teorii pervogo poryadka otdelnykh algebraicheskikh sistem”, Tretya sibirskaya shkola po algebre i analizu, sb.tr. (Irkutsk, 1990), 21–25

[5] A. T. Nurtazin, “Ob eliminatsii kvantorov”, Devyataya vseros. konf. po mat. logike, L., 1988, 119

[6] A. D. Taimanov, “Kharakteristiki aksiomatiziruemykh klassov modelei”, Algebra i logika, 1:4 (1962), 5–32 | MR