Mathematical modeling of nonlinear relaxation in seismic process
The Bulletin of Irkutsk State University. Series Mathematics, Tome 5 (2012) no. 1, pp. 42-47 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article present formulation of the statistical model of relaxation processes in seismicity of Baikal region (MK-model).
Keywords: seismic process, Monte-Carlo method.
@article{IIGUM_2012_5_1_a3,
     author = {F. I. Ivanov},
     title = {Mathematical modeling of nonlinear relaxation in seismic process},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {42--47},
     year = {2012},
     volume = {5},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2012_5_1_a3/}
}
TY  - JOUR
AU  - F. I. Ivanov
TI  - Mathematical modeling of nonlinear relaxation in seismic process
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2012
SP  - 42
EP  - 47
VL  - 5
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2012_5_1_a3/
LA  - ru
ID  - IIGUM_2012_5_1_a3
ER  - 
%0 Journal Article
%A F. I. Ivanov
%T Mathematical modeling of nonlinear relaxation in seismic process
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2012
%P 42-47
%V 5
%N 1
%U http://geodesic.mathdoc.fr/item/IIGUM_2012_5_1_a3/
%G ru
%F IIGUM_2012_5_1_a3
F. I. Ivanov. Mathematical modeling of nonlinear relaxation in seismic process. The Bulletin of Irkutsk State University. Series Mathematics, Tome 5 (2012) no. 1, pp. 42-47. http://geodesic.mathdoc.fr/item/IIGUM_2012_5_1_a3/

[1] V. V. Adushkin, A. A. Spivak, Geomekhanika krupnomasshtabnykh vzryvov, Nedra, M., 1993, 319 pp.

[2] M. A. Sadovskii, V. F. Pisarenko, V. N. Rodionov, “Ot seismologii k geomekhanike”, Vestn. AN SSSR, 1983, no. 1, 32–38

[3] V. A. Potapov, F. I. Ivanov, Diskretnye i nepreryvnye modeli v seismologii, In-t zemnoi kory SO RAN, Irkutsk, 2005, 196 pp.