Combinatorial identity from the theory of integral representations in $\mathbb{C}^{n}$
The Bulletin of Irkutsk State University. Series Mathematics, Tome 4 (2011) no. 4, pp. 39-44 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

At the end of the 1970's, the author developed a method of coefficients, which has found successful application to work with combinatorial sums. In this article, the method of coefficients calculated the some multiple sums. Special cases of these sums were considered earlier in the theory of integral representations, the quantum physics and the wavelet theory.
Keywords: combinatorial sums; the method of coefficients; integral representation.
@article{IIGUM_2011_4_4_a3,
     author = {G. P. Egorychev},
     title = {Combinatorial identity from the theory of integral representations in $\mathbb{C}^{n}$},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {39--44},
     year = {2011},
     volume = {4},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2011_4_4_a3/}
}
TY  - JOUR
AU  - G. P. Egorychev
TI  - Combinatorial identity from the theory of integral representations in $\mathbb{C}^{n}$
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2011
SP  - 39
EP  - 44
VL  - 4
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2011_4_4_a3/
LA  - ru
ID  - IIGUM_2011_4_4_a3
ER  - 
%0 Journal Article
%A G. P. Egorychev
%T Combinatorial identity from the theory of integral representations in $\mathbb{C}^{n}$
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2011
%P 39-44
%V 4
%N 4
%U http://geodesic.mathdoc.fr/item/IIGUM_2011_4_4_a3/
%G ru
%F IIGUM_2011_4_4_a3
G. P. Egorychev. Combinatorial identity from the theory of integral representations in $\mathbb{C}^{n}$. The Bulletin of Irkutsk State University. Series Mathematics, Tome 4 (2011) no. 4, pp. 39-44. http://geodesic.mathdoc.fr/item/IIGUM_2011_4_4_a3/

[1] G. P. Egorychev, Integralnoe predstavlenie i vychislenie kombinatornykh summ, Nauka, Novosibirsk, 1977 ; English transl.: Math. Monogr., 59, Amer. Math. Soc., Providence, RI, 1984 ; 2nd ed., 1989 | MR | Zbl | MR | Zbl

[2] G. P. Egorychev, M. N. Davletshin, “Perechislitelnye problemy v nekotorykh matrichnykh koltsakh i konechnykh gruppakh”, Izv. Irkut. gos. un-ta. Ser. Matematika, 3:4 (2010), 21–32 | Zbl

[3] V. P. Krivokolesko, A. K. Tsikh, “Integralnye predstavleniya v lineino vypuklykh poliedrakh”, Sib. mat. zhurn., 46:3 (2005), 579–593 | MR | Zbl

[4] V. P. Krivokolesko, “Integralnye predstavleniya v lineino vypuklykh poliedrakh i nekotorye kombinatornye tozhdestva”, Zhurn. Sib. feder. un-ta. Matematika Fizika, 2:2 (2009), 176–188

[5] V. K. Leontev, Izbrannye problemy kombinatornogo analiza, MVTU, M., 2001

[6] V. M. Shelkovich, “Algebra raspredelenii s tochechnym singulyarnym nositelem”, DAN SSSR, 267:1 (1982), 53–57 | MR | Zbl

[7] G. P. Egorychev, “Method of coefficients: an algebraic characterization and recept applications”, Labours Waterloo Workshop on Computer Algebra (Waterloo, 5–7 May 2008), Springer-Verlag, 2009, 1–33 | MR

[8] D. Zeilberger, “On an Identity of Daubechies”, Amer. Math. Monthly, 100 (1983), 487 | DOI | MR