The theory of Lists and $\Sigma$-definability
The Bulletin of Irkutsk State University. Series Mathematics, Tome 4 (2011) no. 4, pp. 27-38

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider two-sorted structures (lists algebras) consisting of a basic set $S$ and a set of lists $I_S$ (lists are ordered collections of elements from $S \cup I_S$) with natural relations and operations such as membership relation, head and tail operations etc. and show that recursively definable functions are $\Sigma$-definable in the lists algebras. The recursion is on the length and depth of a list.
Keywords: theory of lists, $\Sigma$-definability, recursion theorem.
@article{IIGUM_2011_4_4_a2,
     author = {A. A. Gavryushkina},
     title = {The theory of {Lists} and $\Sigma$-definability},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {27--38},
     publisher = {mathdoc},
     volume = {4},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2011_4_4_a2/}
}
TY  - JOUR
AU  - A. A. Gavryushkina
TI  - The theory of Lists and $\Sigma$-definability
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2011
SP  - 27
EP  - 38
VL  - 4
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2011_4_4_a2/
LA  - ru
ID  - IIGUM_2011_4_4_a2
ER  - 
%0 Journal Article
%A A. A. Gavryushkina
%T The theory of Lists and $\Sigma$-definability
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2011
%P 27-38
%V 4
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIGUM_2011_4_4_a2/
%G ru
%F IIGUM_2011_4_4_a2
A. A. Gavryushkina. The theory of Lists and $\Sigma$-definability. The Bulletin of Irkutsk State University. Series Mathematics, Tome 4 (2011) no. 4, pp. 27-38. http://geodesic.mathdoc.fr/item/IIGUM_2011_4_4_a2/