Local R-controllability to zero of nonlinear algebraic-differential systems
The Bulletin of Irkutsk State University. Series Mathematics, Tome 4 (2011) no. 4, pp. 101-115
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a control system of nonlinear ordinary differential equations unsolved with respect to the derivative of the desired vector function and identically degenerate in the domain of definition. An arbitrarily high index of unsolvability is allowed. The conditions of local R-controllability to zero (zero-controllability within the reachable set) of such system are obtained in terms of the first order linear approximation. In the linear case, it is shown that R-controllability implies local R-controllability to zero.
Keywords: differential-algebraic equations; nonlinear system; R-controllability in terms of the first order linear approximation.
@article{IIGUM_2011_4_4_a10,
     author = {P. S. Petrenko},
     title = {Local {R-controllability} to zero of nonlinear algebraic-differential systems},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {101--115},
     year = {2011},
     volume = {4},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2011_4_4_a10/}
}
TY  - JOUR
AU  - P. S. Petrenko
TI  - Local R-controllability to zero of nonlinear algebraic-differential systems
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2011
SP  - 101
EP  - 115
VL  - 4
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2011_4_4_a10/
LA  - ru
ID  - IIGUM_2011_4_4_a10
ER  - 
%0 Journal Article
%A P. S. Petrenko
%T Local R-controllability to zero of nonlinear algebraic-differential systems
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2011
%P 101-115
%V 4
%N 4
%U http://geodesic.mathdoc.fr/item/IIGUM_2011_4_4_a10/
%G ru
%F IIGUM_2011_4_4_a10
P. S. Petrenko. Local R-controllability to zero of nonlinear algebraic-differential systems. The Bulletin of Irkutsk State University. Series Mathematics, Tome 4 (2011) no. 4, pp. 101-115. http://geodesic.mathdoc.fr/item/IIGUM_2011_4_4_a10/

[1] A. A. Scheglova, “Preobrazovanie lineinoi algebro-differentsialnoi sistemy k ekvivalentnoi forme”, Analiticheskaya mekhanika, ustoichivost i upravlenie dvizheniem, Tr. IX Chetaev. Mezhdunar. konf., v. 5, Izd-vo IDSTU SO RAN, Irkutsk, 2007, 298–307

[2] A. A. Scheglova, “Upravlyaemost nelineinykh algebro-differentsialnykh sistem”, Avtomatika i telemekhanika, 2008, no. 10, 57–80

[3] G. E. Shilov, Matematicheskii analiz (funktsii neskolkikh veschestvennykh peremennykh), v. 1–2, Nauka, M., 1972 | Zbl

[4] L. Dai, Singular control system, Lecture notes in control and information sciences, 118, Springer-Verlag, Berlin–Heidelberg–N.Y., 1989 | DOI | MR | Zbl

[5] V. Mehrmann, T. Stykel, “Descriptor systems: a general mathematical framework for modelling, simulation and control”, Automatisierungstechnik, 2006, no. 8, 405–415