Numerical methods of solution of boundary-value problem for differential-algebraic equations of the second order
The Bulletin of Irkutsk State University. Series Mathematics, Tome 4 (2011) no. 4, pp. 2-11 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper the numerical methods of solution of boundary-value problem for differential-algebraic equations of the second order are considered. We found conditions fulfillment of which ensures stability and convergence to exact solution of proposed algorithms. The results of numerical calculations are given.
Keywords: linear differential-algebraic equations, boundary-value problem, matrix sweep method.
Mots-clés : matrix polynomial
@article{IIGUM_2011_4_4_a0,
     author = {M. V. Bulatov and N. P. Rakhvalov and Ta Duy Phuong},
     title = {Numerical methods of solution of boundary-value problem for differential-algebraic equations of the second order},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {2--11},
     year = {2011},
     volume = {4},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2011_4_4_a0/}
}
TY  - JOUR
AU  - M. V. Bulatov
AU  - N. P. Rakhvalov
AU  - Ta Duy Phuong
TI  - Numerical methods of solution of boundary-value problem for differential-algebraic equations of the second order
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2011
SP  - 2
EP  - 11
VL  - 4
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2011_4_4_a0/
LA  - ru
ID  - IIGUM_2011_4_4_a0
ER  - 
%0 Journal Article
%A M. V. Bulatov
%A N. P. Rakhvalov
%A Ta Duy Phuong
%T Numerical methods of solution of boundary-value problem for differential-algebraic equations of the second order
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2011
%P 2-11
%V 4
%N 4
%U http://geodesic.mathdoc.fr/item/IIGUM_2011_4_4_a0/
%G ru
%F IIGUM_2011_4_4_a0
M. V. Bulatov; N. P. Rakhvalov; Ta Duy Phuong. Numerical methods of solution of boundary-value problem for differential-algebraic equations of the second order. The Bulletin of Irkutsk State University. Series Mathematics, Tome 4 (2011) no. 4, pp. 2-11. http://geodesic.mathdoc.fr/item/IIGUM_2011_4_4_a0/

[1] M. V. Bulatov, “Ob odnom semeistve matrichnykh troek”, Lyapunovskie chteniya i prezentatsiya informatsionnykh tekhnologii, materialy konf. (Irkutsk, 2002), 10

[2] M. V. Bulatov, Ming-Gong Li, “Primenenie matrichnykh polinomov k issledovaniyu lineinykh differentsialno-algebraicheskikh uravnenii vysokogo poryadka”, Differentsialnye uravneniya, 44:10 (2008), 1299–1306 | MR

[3] F. R. Gantmakher, Teoriya matrits, Nauka, M., 1967, 576 pp. | MR

[4] A. A. Samarskii, Teoriya raznostnykh skhem, Nauka, M., 1989, 616 pp. | MR

[5] A. A. Samarskii, E. S. Nikolaev, Metody resheniya setochnykh uravnenii, Nauka, M., 1978, 590 pp. | MR

[6] E. Khairer, G. Vanner, Reshenie obyknovennykh differentsialnykh uravnenii. Zhestkie i differentsialno-algebraicheskie zadachi, Mir, M., 1999, 685 pp.

[7] V. F. Chistyakov, Algebro-differentsialnye operatory s konechnomernym yadrom, Nauka. Sib. izdat. firma RAN, Novosibirsk, 1996, 278 pp. | MR

[8] K. E. Brenan, S. L. Campbell, L. R. Petzold, Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations, SIAM, Philadelphia, 1996 | MR | Zbl