@article{IIGUM_2011_4_3_a6,
author = {A. V. Keller and E. I. Nazarova},
title = {Optimal measuring problem: the computation solution, the program algorithm},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {74--82},
year = {2011},
volume = {4},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2011_4_3_a6/}
}
TY - JOUR AU - A. V. Keller AU - E. I. Nazarova TI - Optimal measuring problem: the computation solution, the program algorithm JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2011 SP - 74 EP - 82 VL - 4 IS - 3 UR - http://geodesic.mathdoc.fr/item/IIGUM_2011_4_3_a6/ LA - ru ID - IIGUM_2011_4_3_a6 ER -
%0 Journal Article %A A. V. Keller %A E. I. Nazarova %T Optimal measuring problem: the computation solution, the program algorithm %J The Bulletin of Irkutsk State University. Series Mathematics %D 2011 %P 74-82 %V 4 %N 3 %U http://geodesic.mathdoc.fr/item/IIGUM_2011_4_3_a6/ %G ru %F IIGUM_2011_4_3_a6
A. V. Keller; E. I. Nazarova. Optimal measuring problem: the computation solution, the program algorithm. The Bulletin of Irkutsk State University. Series Mathematics, Tome 4 (2011) no. 3, pp. 74-82. http://geodesic.mathdoc.fr/item/IIGUM_2011_4_3_a6/
[1] M. N. Bizyaev, Dinamicheskie modeli i algoritmy vosstanovleniya dinamicheski iskazhennykh signalov izmeritelnykh sistem v skolzyaschem rezhime, Dis. ... kand. tekhn. nauk, Chelyabinsk, 2004
[2] A. V. Keller, E. I. Nazarova, “Ob ustoichivosti reshenii sistem leontevskogo tipa”, VZMSh S. G. Kreina-2010, tez. dokl., 2010, 78–79
[3] A. V. Keller, E. I. Nazarova, “Svoistvo regulyarizuemosti i chislennoe reshenie zadachi dinamicheskogo izmereniya”, Vestn. Yuzh.-Ural. gos. un-ta. Ser. Mat. modelirovanie i programmirovanie, 2010, no. 16(192), 32–38 | Zbl
[4] A. V. Keller, E. I. Nazarova, Optimal measuring problem (optimeas problem), svidetelstvo 2010617899, pravoobladatel GOU VPO «Yuzhno-Uralskii gosudarstvennyi universitet» 210615082, zayavl. 16.08.2010, zaregistr. 01.12.2010, Reestr programm dlya EVM
[5] E. V. Soldatkina, Algoritmy adaptatsii parametrov izmeritelnoi sistemy k minimumu otsenki dinamicheskoi pogreshnosti, Dis. ... kand. tekhn. nauk, Chelyabinsk, 2000
[6] V. E. Fedorov, M. V. Plekhanova, “Zadacha optimalnogo upravleniya dlya odnogo klassa vyrozhdennykh uravnenii”, Izv. RAN. Teoriya i sistemy upravleniya, 9:2 (2004), 92–102 | MR | Zbl
[7] A. L. Shestakov, “Dinamicheskaya tochnost izmeritelnogo preobrazovatelya s korrektiruyuschim ustroistvom v vide modeli datchika”, Metrologiya, 1987, no. 2, 26–34 | MR
[8] A. L. Shestakov, G. A. Sviridyuk, E. V. Zakharova, “Dinamicheskie izmereniya kak zadacha optimalnogo upravleniya”, Obozrenie prikladnoi i promyshlennoi matematiki, 16:4 (2009), 732–733
[9] A. L. Shestakov, M. N. Bizyaev, “Dinamicheskii izmeritelnyi preobrazovatel v skolzyaschem rezhime”, Vestn. Yuzh.-Ural. gos. un-ta. Ser. Kompyuter. tekhnologii, upravlenie, radioelektronika, 2003, no. 4(20), vyp. 2, 35–42 | MR
[10] A. L. Shestakov, G. A. Sviridyuk, “Novyi podkhod k izmereniyu dinamicheski iskazhennykh signalov”, Vestnik Yuzh.-Ural. gos. un-ta. Ser. Mat. modelirovanie i programmirovanie, 2010, no. 16(192), 116–120 | Zbl
[11] A. L. Shestakov, D. Yu. Iosifov, “Upravlenie nulyami i polyusami peredatochnoi funktsii izmeritelnogo preobrazovatelya s izmeryaemym vektorom parametrov sostoyaniya datchika”, Vestn. Yuzh.-Ural. gos. un-ta. Ser. Kompyuter. tekhnologii, upravlenie, radioelektronika, 2003, no. 4(20), vyp. 2, 42–49 | MR
[12] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semi-groups of Operators, VSP, Utrecht–Boston–Koln–Tokyo, 2003 | MR | Zbl