Optimal measuring problem: the computation solution, the program algorithm
The Bulletin of Irkutsk State University. Series Mathematics, Tome 4 (2011) no. 3, pp. 74-82 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Has considered the algorithm of computational solution of dynamic measure problem as the hard optimal control problem, has described program flow diagram, that realize the algorithm, and the flow diagrams of main procedures, has given the example of problem computational solving for the concrete sensor model.
Keywords: computational solution; optimal measuring; optimal control problem; program algorithm.
@article{IIGUM_2011_4_3_a6,
     author = {A. V. Keller and E. I. Nazarova},
     title = {Optimal measuring problem: the computation solution, the program algorithm},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {74--82},
     year = {2011},
     volume = {4},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2011_4_3_a6/}
}
TY  - JOUR
AU  - A. V. Keller
AU  - E. I. Nazarova
TI  - Optimal measuring problem: the computation solution, the program algorithm
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2011
SP  - 74
EP  - 82
VL  - 4
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2011_4_3_a6/
LA  - ru
ID  - IIGUM_2011_4_3_a6
ER  - 
%0 Journal Article
%A A. V. Keller
%A E. I. Nazarova
%T Optimal measuring problem: the computation solution, the program algorithm
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2011
%P 74-82
%V 4
%N 3
%U http://geodesic.mathdoc.fr/item/IIGUM_2011_4_3_a6/
%G ru
%F IIGUM_2011_4_3_a6
A. V. Keller; E. I. Nazarova. Optimal measuring problem: the computation solution, the program algorithm. The Bulletin of Irkutsk State University. Series Mathematics, Tome 4 (2011) no. 3, pp. 74-82. http://geodesic.mathdoc.fr/item/IIGUM_2011_4_3_a6/

[1] M. N. Bizyaev, Dinamicheskie modeli i algoritmy vosstanovleniya dinamicheski iskazhennykh signalov izmeritelnykh sistem v skolzyaschem rezhime, Dis. ... kand. tekhn. nauk, Chelyabinsk, 2004

[2] A. V. Keller, E. I. Nazarova, “Ob ustoichivosti reshenii sistem leontevskogo tipa”, VZMSh S. G. Kreina-2010, tez. dokl., 2010, 78–79

[3] A. V. Keller, E. I. Nazarova, “Svoistvo regulyarizuemosti i chislennoe reshenie zadachi dinamicheskogo izmereniya”, Vestn. Yuzh.-Ural. gos. un-ta. Ser. Mat. modelirovanie i programmirovanie, 2010, no. 16(192), 32–38 | Zbl

[4] A. V. Keller, E. I. Nazarova, Optimal measuring problem (optimeas problem), svidetelstvo 2010617899, pravoobladatel GOU VPO «Yuzhno-Uralskii gosudarstvennyi universitet» 210615082, zayavl. 16.08.2010, zaregistr. 01.12.2010, Reestr programm dlya EVM

[5] E. V. Soldatkina, Algoritmy adaptatsii parametrov izmeritelnoi sistemy k minimumu otsenki dinamicheskoi pogreshnosti, Dis. ... kand. tekhn. nauk, Chelyabinsk, 2000

[6] V. E. Fedorov, M. V. Plekhanova, “Zadacha optimalnogo upravleniya dlya odnogo klassa vyrozhdennykh uravnenii”, Izv. RAN. Teoriya i sistemy upravleniya, 9:2 (2004), 92–102 | MR | Zbl

[7] A. L. Shestakov, “Dinamicheskaya tochnost izmeritelnogo preobrazovatelya s korrektiruyuschim ustroistvom v vide modeli datchika”, Metrologiya, 1987, no. 2, 26–34 | MR

[8] A. L. Shestakov, G. A. Sviridyuk, E. V. Zakharova, “Dinamicheskie izmereniya kak zadacha optimalnogo upravleniya”, Obozrenie prikladnoi i promyshlennoi matematiki, 16:4 (2009), 732–733

[9] A. L. Shestakov, M. N. Bizyaev, “Dinamicheskii izmeritelnyi preobrazovatel v skolzyaschem rezhime”, Vestn. Yuzh.-Ural. gos. un-ta. Ser. Kompyuter. tekhnologii, upravlenie, radioelektronika, 2003, no. 4(20), vyp. 2, 35–42 | MR

[10] A. L. Shestakov, G. A. Sviridyuk, “Novyi podkhod k izmereniyu dinamicheski iskazhennykh signalov”, Vestnik Yuzh.-Ural. gos. un-ta. Ser. Mat. modelirovanie i programmirovanie, 2010, no. 16(192), 116–120 | Zbl

[11] A. L. Shestakov, D. Yu. Iosifov, “Upravlenie nulyami i polyusami peredatochnoi funktsii izmeritelnogo preobrazovatelya s izmeryaemym vektorom parametrov sostoyaniya datchika”, Vestn. Yuzh.-Ural. gos. un-ta. Ser. Kompyuter. tekhnologii, upravlenie, radioelektronika, 2003, no. 4(20), vyp. 2, 42–49 | MR

[12] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semi-groups of Operators, VSP, Utrecht–Boston–Koln–Tokyo, 2003 | MR | Zbl