A formalization of the Codd algebra operations in logic $\mathcal{SHOIN}(D)$
The Bulletin of Irkutsk State University. Series Mathematics, Tome 4 (2011) no. 3, pp. 68-73 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper the problem of the interpretation of data bases as ontologies is investigated, in particular, a modeling of the Codd algebra operations via object theories. The problem of modeling the DB's closed world within the open world of description logics is solved. It is shown that within object theories the Codd's algebra can be defined. The results of the paper are also practically significant, because they offer a homogeneous and coherent method for manipulations with data bases as ontologies in logical knowledge bases.
Keywords: ontology; database; object theory; description logic
Mots-clés : Libretto.
@article{IIGUM_2011_4_3_a5,
     author = {I. A. Kazakov},
     title = {A formalization of the {Codd} algebra operations in logic $\mathcal{SHOIN}(D)$},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {68--73},
     year = {2011},
     volume = {4},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2011_4_3_a5/}
}
TY  - JOUR
AU  - I. A. Kazakov
TI  - A formalization of the Codd algebra operations in logic $\mathcal{SHOIN}(D)$
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2011
SP  - 68
EP  - 73
VL  - 4
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2011_4_3_a5/
LA  - ru
ID  - IIGUM_2011_4_3_a5
ER  - 
%0 Journal Article
%A I. A. Kazakov
%T A formalization of the Codd algebra operations in logic $\mathcal{SHOIN}(D)$
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2011
%P 68-73
%V 4
%N 3
%U http://geodesic.mathdoc.fr/item/IIGUM_2011_4_3_a5/
%G ru
%F IIGUM_2011_4_3_a5
I. A. Kazakov. A formalization of the Codd algebra operations in logic $\mathcal{SHOIN}(D)$. The Bulletin of Irkutsk State University. Series Mathematics, Tome 4 (2011) no. 3, pp. 68-73. http://geodesic.mathdoc.fr/item/IIGUM_2011_4_3_a5/

[1] I. A. Kazakov, A. V. Mantsivoda, “Bazy dannykh kak ontologii”, Izv. Irkut. gos. un-ta. Ser. Matematika, 4:1 (2011), 20–30 | Zbl

[2] A. A. Malykh, A. V. Mantsivoda, “Ob'ektno-orientirovannaya deskriptivnaya logika”, Izv. Irkut. gos. un-ta. Ser. Matematika, 4:1 (2011), 57–72 | MR | Zbl

[3] S. Abiteboul, R. B. Hull, V. Vianu, Foundations of Databases, Addison-Wesley, 1995, 685 pp. | Zbl

[4] A. Malykh, A. Mantsivoda, “A Query Language for Logic Architectures”, Perspectives of System Informatics, Proceedings of 7th International Conference, Lecture Notes in Computer Science, 5947, Springer-Verlag, Berlin–Heidelberg, 2010, 294–305 | DOI | Zbl

[5] http://ontobox.org

[6] R. Rosati, “On Combining Description Logic Ontologies and Nonrecursive Datalog Rules”, Web Reasoning and Rule Systems, Lecture Notes in Computer Science, 341, 2008, 13–27 | DOI