Optimal control of process of fractionization in a tower
The Bulletin of Irkutsk State University. Series Mathematics, Tome 4 (2011) no. 3, pp. 32-41
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A process of fractionization in a tower is considered. This process is described by a system of first-order partial differential equations. A non-classic necessary optimality condition is given for the optimal control problem in a class of smooth admissible controls. Functions of controls are satisfied by integral constraints. The numerical experiment is carried out.
Keywords: fractionization, smooth control, necessary optimality condition, integral constraints.
@article{IIGUM_2011_4_3_a2,
     author = {A. V. Arguchintsev and V. P. Poplevko},
     title = {Optimal control of process of fractionization in a tower},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {32--41},
     year = {2011},
     volume = {4},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2011_4_3_a2/}
}
TY  - JOUR
AU  - A. V. Arguchintsev
AU  - V. P. Poplevko
TI  - Optimal control of process of fractionization in a tower
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2011
SP  - 32
EP  - 41
VL  - 4
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2011_4_3_a2/
LA  - ru
ID  - IIGUM_2011_4_3_a2
ER  - 
%0 Journal Article
%A A. V. Arguchintsev
%A V. P. Poplevko
%T Optimal control of process of fractionization in a tower
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2011
%P 32-41
%V 4
%N 3
%U http://geodesic.mathdoc.fr/item/IIGUM_2011_4_3_a2/
%G ru
%F IIGUM_2011_4_3_a2
A. V. Arguchintsev; V. P. Poplevko. Optimal control of process of fractionization in a tower. The Bulletin of Irkutsk State University. Series Mathematics, Tome 4 (2011) no. 3, pp. 32-41. http://geodesic.mathdoc.fr/item/IIGUM_2011_4_3_a2/

[1] A. V. Arguchintsev, V. P. Poplevko, “Optimalnoe upravlenie granichnymi usloviyami giperbolicheskoi sistemy na primere zadachi khimicheskoi rektifikatsii”, Metody optimizatsii i ikh prilozheniya, Trudy XV Baikalskoi mezhdunarodnoi shkoly-seminara (Irkutsk, 2011), v. 3, 36–40

[2] A. V. Arguchintsev, Optimalnoe upravlenie giperbolicheskimi sistemami, Fizmatlit, M., 2007, 168 pp. | Zbl

[3] A. V. Arguchintsev, V. P. Poplevko, “Zadachi optimalnogo upravleniya, voznikayuschie pri modelirovanii protsessov khimicheskoi rektifikatsii”, Izv. Irkut. gos. un-ta. Ser. Matematika, 2:1 (2009), 52–63 | MR

[4] A. V. Arguchintsev, S. A. Avdonin, V. P. Poplevko, “Optimizatsiya giperbolicheskikh sistem pri integralnykh ogranicheniyakh na gladkie upravleniya”, Izv. Irkut. gos. un-ta. Ser. Matematika, 3:3 (2010), 28–40 | MR | Zbl

[5] N. D. Demidenko, V. I. Potapov, Yu. I. Shokin, Modelirovanie i optimizatsiya sistem s raspredelennymi parametrami, Nauka, Novosibirsk, 2006, 551 pp. | MR