A uniqueness theorem for Sturm–Liouville equations with a spectral parameter rationally contained in the boundary condition
The Bulletin of Irkutsk State University. Series Mathematics, Tome 4 (2011) no. 3, pp. 158-170 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we consider regular boundary value problem for the Sturm–Liouville operator with the eigenvalue parameter rationally contained in the bounary condition. It is shown that the potential and the boundary conditions are uniquely reconstructs on the spectral characteristics.
Keywords: inverse boundary value problem; Sturm–Liouville operator; spectral parameter in boundary conditions; expansion in eigen- and adjoint functions.
@article{IIGUM_2011_4_3_a14,
     author = {A. E. Atkin and G. P. Atkina},
     title = {A uniqueness theorem for {Sturm{\textendash}Liouville} equations with a spectral parameter rationally contained in the boundary condition},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {158--170},
     year = {2011},
     volume = {4},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2011_4_3_a14/}
}
TY  - JOUR
AU  - A. E. Atkin
AU  - G. P. Atkina
TI  - A uniqueness theorem for Sturm–Liouville equations with a spectral parameter rationally contained in the boundary condition
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2011
SP  - 158
EP  - 170
VL  - 4
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2011_4_3_a14/
LA  - ru
ID  - IIGUM_2011_4_3_a14
ER  - 
%0 Journal Article
%A A. E. Atkin
%A G. P. Atkina
%T A uniqueness theorem for Sturm–Liouville equations with a spectral parameter rationally contained in the boundary condition
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2011
%P 158-170
%V 4
%N 3
%U http://geodesic.mathdoc.fr/item/IIGUM_2011_4_3_a14/
%G ru
%F IIGUM_2011_4_3_a14
A. E. Atkin; G. P. Atkina. A uniqueness theorem for Sturm–Liouville equations with a spectral parameter rationally contained in the boundary condition. The Bulletin of Irkutsk State University. Series Mathematics, Tome 4 (2011) no. 3, pp. 158-170. http://geodesic.mathdoc.fr/item/IIGUM_2011_4_3_a14/

[1] M. G. Krein, G. K. Langer, “O spektralnoi funktsii samosopryazhennogo operatora v prostranstve s indefinitnoi metrikoi”, Dokl. AN SSSR, 152:1 (1963), 39–49 | MR

[2] B. M. Levitan, I. S. Sargsyan, Operatory Shturma–Liuvillya i Diraka, Nauka, M., 1988, 432 pp. | MR | Zbl

[3] E. M. Russakovskii, “Operatornaya traktovka granichnoi zadachi so spektralnym parametrom, polinomialno vkhodyaschim v granichnye usloviya”, Funkts. analiz i ego pril., 9:4 (1975), 91–92 | MR

[4] E. M. Russakovskii, “Matrichnaya zadacha Shturma–Liuvillya so spektralnym parametrom v granichnykh usloviyakh. Algebraicheskii i operatornyi aspekty”, Tr. Mosk. matem. obschestva, 57, 1996, 171–198 | MR

[5] A. N. Tikhonov, A. A. Samarskii, Uravneniya matematicheskoi fiziki, Nauka, M., 1977

[6] M. V. Chugunova, “Obratnaya zadacha na konechnom intervale”, Funkts. analiz, 35, Ulyanovsk, 1994, 113–122 | MR | Zbl

[7] M. V. Chugunova, “Effektivnye sposoby resheniya nekotorykh obratnykh zadach”, Funkts. analiz, 36, Ulyanovsk, 1997, 66–74 | MR | Zbl

[8] A. V. Shtraus, “O razlozhenii po sobstvennym funktsiyam odnoi kraevoi zadachi vtorogo poryadka na poluosi”, Izv. AN SSSR. Ser. mat., 20:6 (1956), 783–792

[9] A. V. Shtraus, “O spektralnykh funktsiyakh differentsialnogo operatora chetnogo poryadka”, Dokl. AN SSSR, 115:1 (1957), 67–70 | MR

[10] A. E. Etkin, “O nekotorykh kraevykh zadachakh so spektralnym parametrom v kraevykh usloviyakh”, Funkts. analiz, 18, Ulyanovsk, 1982, 138–146 | MR

[11] P. A. Binding, P. J. Browne, B. A. Watson, “Inverse spectral problems for Sturm–Liouville equations with eigenparameter dependent boundary conditions”, J. London Math. Soc., 62 (2000), 161–182 | DOI | MR | Zbl

[12] G. Freiling, V. A. Yurko, Inverse Sturm–Liouville Problems and their Applications, N.Y., 2001, 305 pp.

[13] N. J. Gulijev, “Inverse eigenvalue problems for Sturm–Liouville equations with spectral parameter linearly contained in one of the boundary conditions”, Inverse Problems, 21:4 (2005) | MR

[14] M. G. Krein, H. Langer, “Über einige Forsetzungsprobleme die eng mit der Theorie hermitescher Operatoren im Raume $\Pi_\kappa$ zusammenhangen. II: Verallgemeinerte Resolventen, u-Resolventen und ganze Operatoren”, J. Funct. Anal., 30:3 (1978), 390–447 | DOI | MR | Zbl