@article{IIGUM_2011_4_3_a14,
author = {A. E. Atkin and G. P. Atkina},
title = {A uniqueness theorem for {Sturm{\textendash}Liouville} equations with a spectral parameter rationally contained in the boundary condition},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {158--170},
year = {2011},
volume = {4},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2011_4_3_a14/}
}
TY - JOUR AU - A. E. Atkin AU - G. P. Atkina TI - A uniqueness theorem for Sturm–Liouville equations with a spectral parameter rationally contained in the boundary condition JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2011 SP - 158 EP - 170 VL - 4 IS - 3 UR - http://geodesic.mathdoc.fr/item/IIGUM_2011_4_3_a14/ LA - ru ID - IIGUM_2011_4_3_a14 ER -
%0 Journal Article %A A. E. Atkin %A G. P. Atkina %T A uniqueness theorem for Sturm–Liouville equations with a spectral parameter rationally contained in the boundary condition %J The Bulletin of Irkutsk State University. Series Mathematics %D 2011 %P 158-170 %V 4 %N 3 %U http://geodesic.mathdoc.fr/item/IIGUM_2011_4_3_a14/ %G ru %F IIGUM_2011_4_3_a14
A. E. Atkin; G. P. Atkina. A uniqueness theorem for Sturm–Liouville equations with a spectral parameter rationally contained in the boundary condition. The Bulletin of Irkutsk State University. Series Mathematics, Tome 4 (2011) no. 3, pp. 158-170. http://geodesic.mathdoc.fr/item/IIGUM_2011_4_3_a14/
[1] M. G. Krein, G. K. Langer, “O spektralnoi funktsii samosopryazhennogo operatora v prostranstve s indefinitnoi metrikoi”, Dokl. AN SSSR, 152:1 (1963), 39–49 | MR
[2] B. M. Levitan, I. S. Sargsyan, Operatory Shturma–Liuvillya i Diraka, Nauka, M., 1988, 432 pp. | MR | Zbl
[3] E. M. Russakovskii, “Operatornaya traktovka granichnoi zadachi so spektralnym parametrom, polinomialno vkhodyaschim v granichnye usloviya”, Funkts. analiz i ego pril., 9:4 (1975), 91–92 | MR
[4] E. M. Russakovskii, “Matrichnaya zadacha Shturma–Liuvillya so spektralnym parametrom v granichnykh usloviyakh. Algebraicheskii i operatornyi aspekty”, Tr. Mosk. matem. obschestva, 57, 1996, 171–198 | MR
[5] A. N. Tikhonov, A. A. Samarskii, Uravneniya matematicheskoi fiziki, Nauka, M., 1977
[6] M. V. Chugunova, “Obratnaya zadacha na konechnom intervale”, Funkts. analiz, 35, Ulyanovsk, 1994, 113–122 | MR | Zbl
[7] M. V. Chugunova, “Effektivnye sposoby resheniya nekotorykh obratnykh zadach”, Funkts. analiz, 36, Ulyanovsk, 1997, 66–74 | MR | Zbl
[8] A. V. Shtraus, “O razlozhenii po sobstvennym funktsiyam odnoi kraevoi zadachi vtorogo poryadka na poluosi”, Izv. AN SSSR. Ser. mat., 20:6 (1956), 783–792
[9] A. V. Shtraus, “O spektralnykh funktsiyakh differentsialnogo operatora chetnogo poryadka”, Dokl. AN SSSR, 115:1 (1957), 67–70 | MR
[10] A. E. Etkin, “O nekotorykh kraevykh zadachakh so spektralnym parametrom v kraevykh usloviyakh”, Funkts. analiz, 18, Ulyanovsk, 1982, 138–146 | MR
[11] P. A. Binding, P. J. Browne, B. A. Watson, “Inverse spectral problems for Sturm–Liouville equations with eigenparameter dependent boundary conditions”, J. London Math. Soc., 62 (2000), 161–182 | DOI | MR | Zbl
[12] G. Freiling, V. A. Yurko, Inverse Sturm–Liouville Problems and their Applications, N.Y., 2001, 305 pp.
[13] N. J. Gulijev, “Inverse eigenvalue problems for Sturm–Liouville equations with spectral parameter linearly contained in one of the boundary conditions”, Inverse Problems, 21:4 (2005) | MR
[14] M. G. Krein, H. Langer, “Über einige Forsetzungsprobleme die eng mit der Theorie hermitescher Operatoren im Raume $\Pi_\kappa$ zusammenhangen. II: Verallgemeinerte Resolventen, u-Resolventen und ganze Operatoren”, J. Funct. Anal., 30:3 (1978), 390–447 | DOI | MR | Zbl