A uniqueness theorem for Sturm--Liouville equations with a spectral parameter rationally contained in the boundary condition
The Bulletin of Irkutsk State University. Series Mathematics, Tome 4 (2011) no. 3, pp. 158-170
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we consider regular boundary value problem for the Sturm–Liouville operator with the eigenvalue parameter rationally contained in the bounary condition. It is shown that the potential and the boundary conditions are uniquely reconstructs on the spectral characteristics.
Keywords:
inverse boundary value problem; Sturm–Liouville operator; spectral parameter in boundary conditions; expansion in eigen- and adjoint functions.
@article{IIGUM_2011_4_3_a14,
author = {A. E. Atkin and G. P. Atkina},
title = {A uniqueness theorem for {Sturm--Liouville} equations with a spectral parameter rationally contained in the boundary condition},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {158--170},
publisher = {mathdoc},
volume = {4},
number = {3},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2011_4_3_a14/}
}
TY - JOUR AU - A. E. Atkin AU - G. P. Atkina TI - A uniqueness theorem for Sturm--Liouville equations with a spectral parameter rationally contained in the boundary condition JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2011 SP - 158 EP - 170 VL - 4 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IIGUM_2011_4_3_a14/ LA - ru ID - IIGUM_2011_4_3_a14 ER -
%0 Journal Article %A A. E. Atkin %A G. P. Atkina %T A uniqueness theorem for Sturm--Liouville equations with a spectral parameter rationally contained in the boundary condition %J The Bulletin of Irkutsk State University. Series Mathematics %D 2011 %P 158-170 %V 4 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IIGUM_2011_4_3_a14/ %G ru %F IIGUM_2011_4_3_a14
A. E. Atkin; G. P. Atkina. A uniqueness theorem for Sturm--Liouville equations with a spectral parameter rationally contained in the boundary condition. The Bulletin of Irkutsk State University. Series Mathematics, Tome 4 (2011) no. 3, pp. 158-170. http://geodesic.mathdoc.fr/item/IIGUM_2011_4_3_a14/