Monotone Lyapunov type functions and global optimality conditions for discrete control problems
The Bulletin of Irkutsk State University. Series Mathematics, Tome 4 (2011) no. 3, pp. 132-145 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Sufficient and necessary global optimality conditions for discrete optimal control problems are proposed. These conditions are based on applying of strongly and weakly monotone Lyapunov type functions that do not decrease along any or some trajectories of discrete dynamical systems under consideration. Proposed sufficient conditions are more general than well-known Krotov conditions. There are obtained conditions that converse the discrete maximum principle into sufficient optimality condition.
Keywords: discrete dynamical systems, monotone Lyapunov type functions, inner estimates to reachable sets, sufficient and necessary global optimality conditions, discrete maximum principle.
@article{IIGUM_2011_4_3_a12,
     author = {S. P. Sorokin},
     title = {Monotone {Lyapunov} type functions and global optimality conditions for discrete control problems},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {132--145},
     year = {2011},
     volume = {4},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2011_4_3_a12/}
}
TY  - JOUR
AU  - S. P. Sorokin
TI  - Monotone Lyapunov type functions and global optimality conditions for discrete control problems
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2011
SP  - 132
EP  - 145
VL  - 4
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2011_4_3_a12/
LA  - ru
ID  - IIGUM_2011_4_3_a12
ER  - 
%0 Journal Article
%A S. P. Sorokin
%T Monotone Lyapunov type functions and global optimality conditions for discrete control problems
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2011
%P 132-145
%V 4
%N 3
%U http://geodesic.mathdoc.fr/item/IIGUM_2011_4_3_a12/
%G ru
%F IIGUM_2011_4_3_a12
S. P. Sorokin. Monotone Lyapunov type functions and global optimality conditions for discrete control problems. The Bulletin of Irkutsk State University. Series Mathematics, Tome 4 (2011) no. 3, pp. 132-145. http://geodesic.mathdoc.fr/item/IIGUM_2011_4_3_a12/

[1] N. V. Antipina, V. A. Dykhta, “Lineinye funktsii Lyapunova–Krotova i dostatochnye usloviya optimalnosti v forme printsipa maksimuma”, Izv. vuzov. Matematika, 2002, no. 12, 11–21 | MR

[2] L. T. Aschepkov, Optimalnoe upravlenie razryvnymi sistemami, Nauka, Novosibirsk, 1987, 226 pp.

[3] V. G. Boltyanskii, Optimalnoe upravlenie diskretnymi sistemami, Nauka, M., 1973, 448 pp. | MR

[4] R. Gabasov, F. M. Kirillova, Kachestvennaya teoriya optimalnykh protsessov, Nauka, M., 1971, 508 pp. | MR

[5] I. V. Girsanov, “Nekotorye svyazi mezhdu funktsiyami Bellmana i Krotova dlya zadachi dinamicheskogo programmirovaniya”, Vestn. Mosk. un-ta, 1968, no. 2, 56–59 | MR | Zbl

[6] V. I. Gurman, Printsip rasshireniya v zadachakh upravleniya, 2-e izd., pererab. i dop., Nauka. Fizmatlit, M., 1985, 288 pp. | MR | Zbl

[7] A. Ya. Dubovitskii, “Diskretnyi printsip maksimuma”, Avtomatika i telemekhanika, 1978, no. 10, 55–71 | MR

[8] V. A. Dykhta, “Neravenstvo Lyapunova–Krotova i dostatochnye usloviya v optimalnom upravlenii”, Itogi nauki i tekhniki. Sovr. matematika i ee prilozheniya, 110, 2006, 76–108

[9] V. A. Dykhta, “Nekotorye prilozheniya neravenstv Gamiltona–Yakobi v optimalnom upravlenii”, Izv. Irkut. gos. un-ta. Ser. Matematika, 2 (2009), 15–28

[10] V. A. Dykhta, “Analiz dostatochnykh uslovii optimalnosti s mnozhestvom funktsii tipa Lyapunova”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16, no. 5, 2010, 66–75

[11] V. A. Dykhta, S. P. Sorokin, “Pozitsionnye resheniya neravenstv Gamiltona–Yakobi v zadachakh upravleniya diskretno-nepreryvnymi sistemami”, Avtomatika i telemekhanika, 2011, no. 6, 48–63 | MR | Zbl

[12] V. F. Krotov, V. I. Gurman, Metody i zadachi optimalnogo upravleniya, Nauka, M., 1973, 448 pp. | MR | Zbl

[13] A. D. Ioffe, V. M. Tikhomirov, Teoriya ekstremalnykh zadach, Nauka, M., 1974, 480 pp. | MR | Zbl

[14] A. I. Propoi, Elementy teorii optimalnykh diskretnykh protsessov, Nauka, M., 1973, 256 pp. | MR

[15] A. I. Subbotin, Obobschennye resheniya uravnenii v chastnykh proizvodnykh pervogo poryadka. Perspektivy dinamicheskoi optimizatsii, In-t kompyuter. issledovanii, M.–Izhevsk, 2003, 336 pp.

[16] V. Dykhta, O. Samsonyuk, “Some applications of Hamilton–Jacobi inequalities for classical and impulsive optimal control problems”, European Journal of Control, 17:1 (2011), 55–69 | DOI | MR | Zbl

[17] V. F. Krotov, Global Methods in Optimal Control Theory, Marcel Dekker, N.Y., 1996, 384 pp. | MR | Zbl

[18] B. S. Mordukhovich, Variational Analysis and Generalized Differentiation, v. I, II, Fundamental Principles of Mathematical Sciences, 330, 331, Springer, Berlin, 2006, 611 pp. ; 580 pp. | MR

[19] F. H. Clarke, Yu. S. Ledyaev, R. J. Stern, P. R. Wolenski, Nonsmooth Analysis and Control Theory, Grad. Texts in Math., 178, Springer-Verlag, N. Y., 1998, 276 pp. | MR | Zbl