An uniformization and successive approximation of solutions of nonlinear equations with vector parameter
The Bulletin of Irkutsk State University. Series Mathematics, Tome 4 (2011) no. 3, pp. 116-123 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a nonlinear operator equation with a Fredholm linear operator in the leading part, depending on small vector parameter. We have proposed the way of construction the solutions. Theory is applied for investigation of the boundary problem of buckling imperfection sensitivity of columns.
Mots-clés : ramification of solutions
Keywords: Fredholm operator, asymptotics, successive approximations, boundary problem.
@article{IIGUM_2011_4_3_a10,
     author = {R. Y. Leontyev and N. A. Sidorov},
     title = {An uniformization and successive approximation of solutions of nonlinear equations with vector parameter},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {116--123},
     year = {2011},
     volume = {4},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2011_4_3_a10/}
}
TY  - JOUR
AU  - R. Y. Leontyev
AU  - N. A. Sidorov
TI  - An uniformization and successive approximation of solutions of nonlinear equations with vector parameter
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2011
SP  - 116
EP  - 123
VL  - 4
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2011_4_3_a10/
LA  - ru
ID  - IIGUM_2011_4_3_a10
ER  - 
%0 Journal Article
%A R. Y. Leontyev
%A N. A. Sidorov
%T An uniformization and successive approximation of solutions of nonlinear equations with vector parameter
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2011
%P 116-123
%V 4
%N 3
%U http://geodesic.mathdoc.fr/item/IIGUM_2011_4_3_a10/
%G ru
%F IIGUM_2011_4_3_a10
R. Y. Leontyev; N. A. Sidorov. An uniformization and successive approximation of solutions of nonlinear equations with vector parameter. The Bulletin of Irkutsk State University. Series Mathematics, Tome 4 (2011) no. 3, pp. 116-123. http://geodesic.mathdoc.fr/item/IIGUM_2011_4_3_a10/

[1] S. G. Krein, Funktsionalnyi analiz, Nauka, M., 1972, 544 pp. | MR | Zbl

[2] L. Kollatts, Zadachi na sobstvennye znacheniya, Nauka, M., 1968, 503 pp.

[3] R. Yu. Leontev, “O resheniyakh maksimalnogo poryadka malosti nelineinykh uravnenii”, Vestn. Buryat. gos. un-ta. Matematika, informatika, 2009, no. 9, 77–83

[4] R. Yu. Leontev, “O resheniyakh maksimalnogo poryadka malosti nelineinykh uravnenii v sektorialnoi okrestnosti nulya”, Vestn. Yuzh.-Ural. gos. un-ta. Matematicheskoe modelirovanie i programmirovanie, 2011, no. 4(221), Vyp. 7, 66–70

[5] N. A. Sidorov, “Minimalnye vetvi reshenii nelineinykh uravnenii i asimptoticheskie regulyarizatory”, Nelineinye granichnye zadachi, 2004, no. 14, 161–164 | Zbl

[6] N. A. Sidorov, R. Yu. Leontev, “O resheniyakh maksimalnogo poryadka malosti nelineinykh uravnenii s vektornym parametrom v sektorialnykh okrestnostyakh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16, no. 2, 2010, 226–237

[7] N. A. Sidorov, D. N. Sidorov, “O reshenii integralnogo uravneniya Gammershteina v neregulyarnom sluchae metodom posledovatelnykh priblizhenii”, Sib. mat. zhurn., 51:2 (2010), 404–409 | MR | Zbl

[8] N. A. Sidorov, Obschie voprosy regulyarizatsii v zadachakh teorii vetvleniya, Izd-vo Irkutsk. gos. un-ta, Irkutsk, 1982, 311 pp. | MR | Zbl

[9] V. A. Trenogin, Funktsionalnyi analiz, Fizmatlit, M., 2002, 488 pp.

[10] J. P. Keener, “Buckling imperfection sensitivity of columns and spherical caps”, Quart. Appl. Math., 32:2 (1974), 173–188 | MR | Zbl