On the preservation of instability of mechanical systems under the evolution of dissipative forces
The Bulletin of Irkutsk State University. Series Mathematics, Tome 4 (2011) no. 3, pp. 3-19 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The mechanical systems described by the Lagrange differential equations of the second kind with nonstationary evolution of dissipative forces are studied. It is assumed that the evolution results in domination, or disappearing of dissipative forces. In the case of nonapplicability of known for nonstationary linearizations classical criteria, the theorems on the instability by the linear approximation of the equilibrium position are proved. The systems with essentially nonlinear dissipative forces are investigated. It is assumed that dissipative forces are determined by the homogeneous Rayleigh function, or depend on generalized coordinates. For such systems, the conditions of instability of the equilibrium position are also obtained.
Keywords: mechanical systems, stability, Lyapunov functions, nonstationary parameter.
Mots-clés : dissipative forces
@article{IIGUM_2011_4_3_a0,
     author = {A. Yu. Aleksandrov and A. V. Platonov and A. A. Kosov},
     title = {On the preservation of instability of mechanical systems under the evolution of dissipative forces},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {3--19},
     year = {2011},
     volume = {4},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2011_4_3_a0/}
}
TY  - JOUR
AU  - A. Yu. Aleksandrov
AU  - A. V. Platonov
AU  - A. A. Kosov
TI  - On the preservation of instability of mechanical systems under the evolution of dissipative forces
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2011
SP  - 3
EP  - 19
VL  - 4
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2011_4_3_a0/
LA  - ru
ID  - IIGUM_2011_4_3_a0
ER  - 
%0 Journal Article
%A A. Yu. Aleksandrov
%A A. V. Platonov
%A A. A. Kosov
%T On the preservation of instability of mechanical systems under the evolution of dissipative forces
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2011
%P 3-19
%V 4
%N 3
%U http://geodesic.mathdoc.fr/item/IIGUM_2011_4_3_a0/
%G ru
%F IIGUM_2011_4_3_a0
A. Yu. Aleksandrov; A. V. Platonov; A. A. Kosov. On the preservation of instability of mechanical systems under the evolution of dissipative forces. The Bulletin of Irkutsk State University. Series Mathematics, Tome 4 (2011) no. 3, pp. 3-19. http://geodesic.mathdoc.fr/item/IIGUM_2011_4_3_a0/

[1] A. Yu. Aleksandrov, Ustoichivost dvizhenii neavtonomnykh dinamicheskikh sistem, Izd-vo S.-Peterb. un-ta, SPb., 2004

[2] A. Yu. Aleksandrov, “Ob ustoichivosti polozhenii ravnovesiya nelineinykh neavtonomnykh mekhanicheskikh sistem”, Prikl. matematika i mekhanika, 71:3 (2007), 361–376 | Zbl

[3] A. Yu. Aleksandrov, A. A. Kosov, “Ob asimptoticheskoi ustoichivosti polozhenii ravnovesiya mekhanicheskikh sistem s nestatsionarnym veduschim parametrom”, Izv. RAN. Teoriya i sistemy upravleniya, 2008, no. 3, 8–22 | MR | Zbl

[4] A. S. Andreev, “Ob asimptoticheskoi ustoichivosti i neustoichivosti nulevogo resheniya neavtonomnoi sistemy”, Prikl. matematika i mekhanika, 48:2 (1984), 225–232 | MR

[5] I. I. Vulfson, “Uchet nelineinykh dissipativnykh sil pri ogranichennoi iskhodnoi informatsii”, Teoriya mekhanizmov i mashin, 2003, no. 1, 70–77

[6] V. I. Zubov, “Kanonicheskaya struktura vektornogo silovogo polya”, Problemy mekhaniki tverdogo deformiruemogo tela, Sudostroenie, L., 1970, 167–170

[7] A. V. Karapetyan, “Ob ustoichivosti nekonservativnykh sistem”, Vestn. MGU. Ser. Matematika i mekhanika, 1975, no. 4, 109–113

[8] A. A. Kosov, “Ob eksponentsialnoi ustoichivosti i stabilizatsii neavtonomnykh mekhanicheskikh sistem s nekonservativnymi silami”, Prikl. matematika i mekhanika, 71:3 (2007), 411–426 | MR | Zbl

[9] V. M. Lakhadanov, “O vliyanii struktury sil na ustoichivost dvizheniya”, PMM, 38:2 (1974), 246–253 | MR

[10] G. A. Leonov, “Problema obosnovaniya pervogo priblizheniya v teorii ustoichivosti dvizheniya”, Uspekhi mekhaniki, 2:3 (2003), 3–35

[11] A. I. Lure, Analiticheskaya mekhanika, Fizmatgiz, M., 1961 | MR

[12] A. M. Lyapunov, Obschaya zadacha ob ustoichivosti dvizheniya, ONTI, M.–L., 1935

[13] I. G. Malkin, Teoriya ustoichivosti dvizheniya, Nauka, M., 1966, 525 pp. | MR | Zbl

[14] V. M. Matrosov, Metod vektornykh funktsii Lyapunova: analiz dinamicheskikh svoistv nelineinykh sistem, Fizmatlit, M., 2001, 384 pp.

[15] D. R. Merkin, Vvedenie v teoriyu ustoichivosti dvizheniya, Nauka, M., 1987 | MR | Zbl

[16] N. G. Chetaev, Ustoichivost dvizheniya. Raboty po analiticheskoi mekhanike, Izd-vo AN SSSR, M., 1962, 535 pp. | MR

[17] L. Khatvani, “O deistvii dempfirovaniya na svoistva ustoichivosti ravnovesii neavtonomnykh sistem”, Prikl. matematika i mekhanika, 65:4 (2001), 725–732 | MR

[18] L. Hatvani, T. Krisztin, V. Totik, “A necessary and sufficient condition for the asymptotic stability of the damped oscillator”, J. Different. Equat., 119:1 (1995), 209–223 | DOI | MR | Zbl

[19] J. Sun, O. G. Wang, Q. C. Zhong, “A less conservative stability test for second-order linear time-varying vector differential equations”, Intern. J. of Control, 80:4 (2007), 523–526 | DOI | MR | Zbl