Mots-clés : dissipative forces
@article{IIGUM_2011_4_3_a0,
author = {A. Yu. Aleksandrov and A. V. Platonov and A. A. Kosov},
title = {On the preservation of instability of mechanical systems under the evolution of dissipative forces},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {3--19},
year = {2011},
volume = {4},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2011_4_3_a0/}
}
TY - JOUR AU - A. Yu. Aleksandrov AU - A. V. Platonov AU - A. A. Kosov TI - On the preservation of instability of mechanical systems under the evolution of dissipative forces JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2011 SP - 3 EP - 19 VL - 4 IS - 3 UR - http://geodesic.mathdoc.fr/item/IIGUM_2011_4_3_a0/ LA - ru ID - IIGUM_2011_4_3_a0 ER -
%0 Journal Article %A A. Yu. Aleksandrov %A A. V. Platonov %A A. A. Kosov %T On the preservation of instability of mechanical systems under the evolution of dissipative forces %J The Bulletin of Irkutsk State University. Series Mathematics %D 2011 %P 3-19 %V 4 %N 3 %U http://geodesic.mathdoc.fr/item/IIGUM_2011_4_3_a0/ %G ru %F IIGUM_2011_4_3_a0
A. Yu. Aleksandrov; A. V. Platonov; A. A. Kosov. On the preservation of instability of mechanical systems under the evolution of dissipative forces. The Bulletin of Irkutsk State University. Series Mathematics, Tome 4 (2011) no. 3, pp. 3-19. http://geodesic.mathdoc.fr/item/IIGUM_2011_4_3_a0/
[1] A. Yu. Aleksandrov, Ustoichivost dvizhenii neavtonomnykh dinamicheskikh sistem, Izd-vo S.-Peterb. un-ta, SPb., 2004
[2] A. Yu. Aleksandrov, “Ob ustoichivosti polozhenii ravnovesiya nelineinykh neavtonomnykh mekhanicheskikh sistem”, Prikl. matematika i mekhanika, 71:3 (2007), 361–376 | Zbl
[3] A. Yu. Aleksandrov, A. A. Kosov, “Ob asimptoticheskoi ustoichivosti polozhenii ravnovesiya mekhanicheskikh sistem s nestatsionarnym veduschim parametrom”, Izv. RAN. Teoriya i sistemy upravleniya, 2008, no. 3, 8–22 | MR | Zbl
[4] A. S. Andreev, “Ob asimptoticheskoi ustoichivosti i neustoichivosti nulevogo resheniya neavtonomnoi sistemy”, Prikl. matematika i mekhanika, 48:2 (1984), 225–232 | MR
[5] I. I. Vulfson, “Uchet nelineinykh dissipativnykh sil pri ogranichennoi iskhodnoi informatsii”, Teoriya mekhanizmov i mashin, 2003, no. 1, 70–77
[6] V. I. Zubov, “Kanonicheskaya struktura vektornogo silovogo polya”, Problemy mekhaniki tverdogo deformiruemogo tela, Sudostroenie, L., 1970, 167–170
[7] A. V. Karapetyan, “Ob ustoichivosti nekonservativnykh sistem”, Vestn. MGU. Ser. Matematika i mekhanika, 1975, no. 4, 109–113
[8] A. A. Kosov, “Ob eksponentsialnoi ustoichivosti i stabilizatsii neavtonomnykh mekhanicheskikh sistem s nekonservativnymi silami”, Prikl. matematika i mekhanika, 71:3 (2007), 411–426 | MR | Zbl
[9] V. M. Lakhadanov, “O vliyanii struktury sil na ustoichivost dvizheniya”, PMM, 38:2 (1974), 246–253 | MR
[10] G. A. Leonov, “Problema obosnovaniya pervogo priblizheniya v teorii ustoichivosti dvizheniya”, Uspekhi mekhaniki, 2:3 (2003), 3–35
[11] A. I. Lure, Analiticheskaya mekhanika, Fizmatgiz, M., 1961 | MR
[12] A. M. Lyapunov, Obschaya zadacha ob ustoichivosti dvizheniya, ONTI, M.–L., 1935
[13] I. G. Malkin, Teoriya ustoichivosti dvizheniya, Nauka, M., 1966, 525 pp. | MR | Zbl
[14] V. M. Matrosov, Metod vektornykh funktsii Lyapunova: analiz dinamicheskikh svoistv nelineinykh sistem, Fizmatlit, M., 2001, 384 pp.
[15] D. R. Merkin, Vvedenie v teoriyu ustoichivosti dvizheniya, Nauka, M., 1987 | MR | Zbl
[16] N. G. Chetaev, Ustoichivost dvizheniya. Raboty po analiticheskoi mekhanike, Izd-vo AN SSSR, M., 1962, 535 pp. | MR
[17] L. Khatvani, “O deistvii dempfirovaniya na svoistva ustoichivosti ravnovesii neavtonomnykh sistem”, Prikl. matematika i mekhanika, 65:4 (2001), 725–732 | MR
[18] L. Hatvani, T. Krisztin, V. Totik, “A necessary and sufficient condition for the asymptotic stability of the damped oscillator”, J. Different. Equat., 119:1 (1995), 209–223 | DOI | MR | Zbl
[19] J. Sun, O. G. Wang, Q. C. Zhong, “A less conservative stability test for second-order linear time-varying vector differential equations”, Intern. J. of Control, 80:4 (2007), 523–526 | DOI | MR | Zbl