Linear inequalities system’s solutions least distant from origin of coordinates
The Bulletin of Irkutsk State University. Series Mathematics, Tome 4 (2011) no. 2, pp. 102-113 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of searching the least distant point of polyhedron from origin of coordinates in several statements is considered. A polyhedron is defined as a solution set of system of linear inequalities. Also the results of solving penalty functions minimizations problems including Holder norms with different power and weighting coefficients are considered. The multicriterion problem of searching vector of solutions of system of inequalitues with Pareto-minimal absolute values of all components is discussed. Theorems about relationship of sets of solutions of different statements of problem under consideration are formulated and proved.
Keywords: Polyhedron, System of linear inequalities, Holder norms, Euclidean norms
Mots-clés : Pareto-optimal solutions.
@article{IIGUM_2011_4_2_a7,
     author = {V. I. Zorkaltsev},
     title = {Linear inequalities system{\textquoteright}s solutions least distant from origin of coordinates},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {102--113},
     year = {2011},
     volume = {4},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2011_4_2_a7/}
}
TY  - JOUR
AU  - V. I. Zorkaltsev
TI  - Linear inequalities system’s solutions least distant from origin of coordinates
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2011
SP  - 102
EP  - 113
VL  - 4
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2011_4_2_a7/
LA  - ru
ID  - IIGUM_2011_4_2_a7
ER  - 
%0 Journal Article
%A V. I. Zorkaltsev
%T Linear inequalities system’s solutions least distant from origin of coordinates
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2011
%P 102-113
%V 4
%N 2
%U http://geodesic.mathdoc.fr/item/IIGUM_2011_4_2_a7/
%G ru
%F IIGUM_2011_4_2_a7
V. I. Zorkaltsev. Linear inequalities system’s solutions least distant from origin of coordinates. The Bulletin of Irkutsk State University. Series Mathematics, Tome 4 (2011) no. 2, pp. 102-113. http://geodesic.mathdoc.fr/item/IIGUM_2011_4_2_a7/

[1] G. V. Bagratuni, Predislovie: K. F. Gatses, Izbrannye geofizicheskie sochineniya, Geodezist, M., 1967

[2] V. I. Zorkaltsev, Metod naimenshikh kvadratov: geometricheskie svoistva, alternativnye podkhody, prilozheniya, Nauka, Novosibirsk, 1995, 270 pp. | MR

[3] Yu. V. Linnik, Metod naimenshikh kvadratov i osnovy matematiko-statisticheskoi teorii obrabotki nablyudenii, Fizmatgiz, M., 1962, 349 pp. | MR | Zbl

[4] Ch. Louson, R. Khenson, Chislennoe reshenie zadach metoda naimenshikh kvadratov, Nauka, M., 1986, 232 pp. | MR