On convergence of the dual Newton method for linear semidefinite programming problem
The Bulletin of Irkutsk State University. Series Mathematics, Tome 4 (2011) no. 2, pp. 75-90 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The dual Newton method for linear semidefinite programming problem is considered. Under assumption that strict complementarity holds for solutions of the primal and dual problems the local convergence with linear rate is proved.
Keywords: semidefinite programming, dual problem, Newton's method
Mots-clés : local convergence.
@article{IIGUM_2011_4_2_a5,
     author = {V. G. Zhadan and A. A. Orlov},
     title = {On convergence of the dual {Newton} method for linear semidefinite programming problem},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {75--90},
     year = {2011},
     volume = {4},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2011_4_2_a5/}
}
TY  - JOUR
AU  - V. G. Zhadan
AU  - A. A. Orlov
TI  - On convergence of the dual Newton method for linear semidefinite programming problem
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2011
SP  - 75
EP  - 90
VL  - 4
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2011_4_2_a5/
LA  - ru
ID  - IIGUM_2011_4_2_a5
ER  - 
%0 Journal Article
%A V. G. Zhadan
%A A. A. Orlov
%T On convergence of the dual Newton method for linear semidefinite programming problem
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2011
%P 75-90
%V 4
%N 2
%U http://geodesic.mathdoc.fr/item/IIGUM_2011_4_2_a5/
%G ru
%F IIGUM_2011_4_2_a5
V. G. Zhadan; A. A. Orlov. On convergence of the dual Newton method for linear semidefinite programming problem. The Bulletin of Irkutsk State University. Series Mathematics, Tome 4 (2011) no. 2, pp. 75-90. http://geodesic.mathdoc.fr/item/IIGUM_2011_4_2_a5/

[1] V. I. Arnold, “O matritsakh, zavisyaschikh ot parametrov”, UMN, 26:2(158) (1971), 101–114 | MR

[2] I. I. Dikin, Metod vnutrennikh tochek v lineinom i nelineinom programmirovanii, URSS, M., 2009, 120 pp.

[3] Yu. G. Evtushenko, V. G. Zhadan, “Dvoistvennye barerno-proektivnye i barerno-nyutonovskie metody dlya lineinogo programmirovaniya”, Zhurn. vychisl. matematiki i mat. fiziki, 36:7 (1994), 30–45 | MR

[4] V. G. Zhadan, A. A. Orlov, “Dvoistvennyi metod Nyutona dlya lineinoi zadachi poluopredelennogo programmirovaniya”, Optimizatsiya i prilozheniya, VTs RAN, M., 2010, 87–108

[5] V. I. Zorkaltsev, “Ob odnom klasse algoritmov vnutrennikh tochek”, Zhurn. vychisl. matematiki i mat. fiziki, 49:12 (2009), 2114–2130 | MR

[6] Ya. R. Magnus, Ch. Neidekker, Matrichnoe differentsialnoe ischislenie s prilozheniyami k statistike i ekonometrike, Fizmatlit, M., 2002, 496 pp.

[7] Dzh. Ortega, V. Reinboldt, Iteratsionnye metody resheniya nelineinykh sistem uravnenii so mnogimi neizvestnymi, Mir, M., 1975, 558 pp. | MR

[8] F. Alizadeh, J.-P. F. Haeberly, M. L. Overton, “Complementarity and nondegeneracy in semidefinite programming”, Mathematical Programming. Series B, 77:2 (1997), 129–162 | MR

[9] E. de Klerk, Aspects of Semidefinite Programming. Interior Point Algorithms and Selected Applications, Kluwer Academic Publishers, 2004, 283 pp. | MR

[10] J. R. Magnus, H. Neudecker, “The elimination matrix: some lemmas and applications”, SIAM J. Alg. Disc. Meth., 1:4 (1980), 422–449 | DOI | MR | Zbl

[11] Yu. E. Nesterov, A. S. Nemirovski, Interior Point Polynomial Algorithms in Convex Programming, SIAM Publications, SIAM, Philadelphia, 1994, 405 pp. | MR | Zbl

[12] L. Vandenberghe, S. Boyd, “Semidefinite programming”, SIAM Rev., 38 (1996), 49–95 | DOI | MR | Zbl

[13] H. Wolkowicz, R. Saigal, L. Vandenberghe (eds.), Handbook of Semidefinite Programming, Kluwer Academic Publishers, 2000, 656 pp. | MR