On optimal control methods to dynamical object at its approaching to a mobile aim
The Bulletin of Irkutsk State University. Series Mathematics, Tome 4 (2011) no. 2, pp. 60-74 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A linear optimal control problem at approaching the dynamical object under conditions of uncertainty with mobile aim is considered. Linear time-varying control system for which various type a priori and current information on system behaviour and disturbances influenced are investigated. Determinate and not completely determinate systems, maneuvering nonmaneuvering aims with motions being not completely determined are studied and principles of real-time control by optimal estimators and the controller are justified and tested by computer.
Keywords: approach of object, uncertainty, open-loop
Mots-clés : mobile aim, positional solutions.
@article{IIGUM_2011_4_2_a4,
     author = {R. Gabasov and N. M. Dmitruk and F. M. Kirillova},
     title = {On optimal control methods to dynamical object at its approaching to a mobile aim},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {60--74},
     year = {2011},
     volume = {4},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2011_4_2_a4/}
}
TY  - JOUR
AU  - R. Gabasov
AU  - N. M. Dmitruk
AU  - F. M. Kirillova
TI  - On optimal control methods to dynamical object at its approaching to a mobile aim
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2011
SP  - 60
EP  - 74
VL  - 4
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2011_4_2_a4/
LA  - ru
ID  - IIGUM_2011_4_2_a4
ER  - 
%0 Journal Article
%A R. Gabasov
%A N. M. Dmitruk
%A F. M. Kirillova
%T On optimal control methods to dynamical object at its approaching to a mobile aim
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2011
%P 60-74
%V 4
%N 2
%U http://geodesic.mathdoc.fr/item/IIGUM_2011_4_2_a4/
%G ru
%F IIGUM_2011_4_2_a4
R. Gabasov; N. M. Dmitruk; F. M. Kirillova. On optimal control methods to dynamical object at its approaching to a mobile aim. The Bulletin of Irkutsk State University. Series Mathematics, Tome 4 (2011) no. 2, pp. 60-74. http://geodesic.mathdoc.fr/item/IIGUM_2011_4_2_a4/

[1] N. V. Balashevich, R. Gabasov, F. M. Kirillova, “Chislennye metody programmnoi i pozitsionnoi optimizatsii lineinykh sistem upravleniya”, Zhurn. vychisl. i mat. fiziki, 40:6 (2000), 838–859 | MR | Zbl

[2] N. V. Balashevich, R. Gabasov, F. M. Kirillova, “Postroenie optimalnykh obratnykh svyazei po matematicheskim modelyam s neopredelennostyu”, Zhurn. vychisl. i mat. fiziki, 44:2 (2004), 265–286 | MR | Zbl

[3] R. Gabasov, F. M. Kirillova, E. I. Poyasok, “Optimalnoe upravlenie po preposteriornym otsenkam mnozhestvennoi neopredelennosti”, Avtomatika i telemekhanika, 2009, no. 8, 70–83 | MR | Zbl

[4] R. Gabasov, N. M. Dmitruk, F. M. Kirillova, “Optimalnoe upravlenie mnogomernymi sistemami po netochnym izmereniyam ikh vykhodnykh signalov”, Tr. In-ta matematiki i mekhaniki UrO RAN, 10, no. 2, 2004, 33–57 | MR

[5] R. Gabasov, N. M. Dmitruk, F. M. Kirillova, “Optimalnoe nablyudenie za nestatsionarnymi dinamicheskimi sistemami”, Izv. RAN. TiSU, 2002, no. 2, 35–46 | MR

[6] R. Gabasov, N. M. Dmitruk, F. M. Kirillova, “Optimalnoe nablyudenie pri postoyanno deistvuyuschikh vozmuscheniyakh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 15, no. 4, 2009, 52–68 | MR

[7] R. Gabasov, F. M. Kirillova, E. I. Poyasok, “Optimalnoe upravlenie v realnom vremeni”, Izv. Irkut. gos. un-ta. Ser.: Matematika, 2:1 (2009), 132–169

[8] R. Gabasov, N. M. Dmitruk, F. M. Kirillova, E. I. Poyasok, “Zadachi optimalnogo upravleniya s podvizhnoi tselyu”, Tr. In-ta matematiki i mekhaniki UrO RAN, 15, no. 6, 2009, 16–21

[9] N. N. Krasovskii, Igrovye zadachi o vstreche dvizhenii, Nauka, M., 1970, 420 pp. | MR | Zbl

[10] N. N. Krasovskii, A. I. Subbotin, Pozitsionnye differentsialnye igry, Nauka, M., 1974, 455 pp. | MR | Zbl

[11] N. N. Krasovskii, A. N. Kotelnikova, O differentsialnoi igre na perekhvat, UPI, Ekaterinburg, 2009, 47 pp.