Lagrangian relaxations for the nonlinear $p$-median problem
The Bulletin of Irkutsk State University. Series Mathematics, Tome 4 (2011) no. 2, pp. 45-59
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we study a modification of well-known $p$-median problem, in which the number of facilities is a non-fixed value. We consider the problem statement and propose a heuristic method to get lower bounds of the optimal values.
Keywords:
the $p$-median problem, Lagrangian relaxation, lower bounds; subgradient algorithm.
@article{IIGUM_2011_4_2_a3,
author = {I. L. Vasiliev and A. V. Ushakov},
title = {Lagrangian relaxations for the nonlinear $p$-median problem},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {45--59},
publisher = {mathdoc},
volume = {4},
number = {2},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2011_4_2_a3/}
}
TY - JOUR AU - I. L. Vasiliev AU - A. V. Ushakov TI - Lagrangian relaxations for the nonlinear $p$-median problem JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2011 SP - 45 EP - 59 VL - 4 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IIGUM_2011_4_2_a3/ LA - ru ID - IIGUM_2011_4_2_a3 ER -
I. L. Vasiliev; A. V. Ushakov. Lagrangian relaxations for the nonlinear $p$-median problem. The Bulletin of Irkutsk State University. Series Mathematics, Tome 4 (2011) no. 2, pp. 45-59. http://geodesic.mathdoc.fr/item/IIGUM_2011_4_2_a3/