Lagrangian relaxations for the nonlinear $p$-median problem
The Bulletin of Irkutsk State University. Series Mathematics, Tome 4 (2011) no. 2, pp. 45-59

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study a modification of well-known $p$-median problem, in which the number of facilities is a non-fixed value. We consider the problem statement and propose a heuristic method to get lower bounds of the optimal values.
Keywords: the $p$-median problem, Lagrangian relaxation, lower bounds; subgradient algorithm.
@article{IIGUM_2011_4_2_a3,
     author = {I. L. Vasiliev and A. V. Ushakov},
     title = {Lagrangian relaxations for the nonlinear $p$-median problem},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {45--59},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2011_4_2_a3/}
}
TY  - JOUR
AU  - I. L. Vasiliev
AU  - A. V. Ushakov
TI  - Lagrangian relaxations for the nonlinear $p$-median problem
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2011
SP  - 45
EP  - 59
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2011_4_2_a3/
LA  - ru
ID  - IIGUM_2011_4_2_a3
ER  - 
%0 Journal Article
%A I. L. Vasiliev
%A A. V. Ushakov
%T Lagrangian relaxations for the nonlinear $p$-median problem
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2011
%P 45-59
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIGUM_2011_4_2_a3/
%G ru
%F IIGUM_2011_4_2_a3
I. L. Vasiliev; A. V. Ushakov. Lagrangian relaxations for the nonlinear $p$-median problem. The Bulletin of Irkutsk State University. Series Mathematics, Tome 4 (2011) no. 2, pp. 45-59. http://geodesic.mathdoc.fr/item/IIGUM_2011_4_2_a3/