The method of modified Lagrange function for optimal control problem
The Bulletin of Irkutsk State University. Series Mathematics, Tome 4 (2011) no. 2, pp. 27-44 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The method for optimal control problem is considered. This method is known as the method of modified Lagrange function. The convergence of this method is proved.
Keywords: optimal control, Lagrange function, modified Lagrange function, method
Mots-clés : convergence.
@article{IIGUM_2011_4_2_a2,
     author = {A. S. Antipin},
     title = {The method of modified {Lagrange} function for optimal control problem},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {27--44},
     year = {2011},
     volume = {4},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2011_4_2_a2/}
}
TY  - JOUR
AU  - A. S. Antipin
TI  - The method of modified Lagrange function for optimal control problem
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2011
SP  - 27
EP  - 44
VL  - 4
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2011_4_2_a2/
LA  - ru
ID  - IIGUM_2011_4_2_a2
ER  - 
%0 Journal Article
%A A. S. Antipin
%T The method of modified Lagrange function for optimal control problem
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2011
%P 27-44
%V 4
%N 2
%U http://geodesic.mathdoc.fr/item/IIGUM_2011_4_2_a2/
%G ru
%F IIGUM_2011_4_2_a2
A. S. Antipin. The method of modified Lagrange function for optimal control problem. The Bulletin of Irkutsk State University. Series Mathematics, Tome 4 (2011) no. 2, pp. 27-44. http://geodesic.mathdoc.fr/item/IIGUM_2011_4_2_a2/

[1] A. S. Antipin, “Ravnovesnoe programmirovanie: proksimalnye metody”, Zhurn. vychisl. matematiki i mat. fiziki, 37:11 (1997), 1327–1339 | MR | Zbl

[2] A. S. Antipin, “Ravnovesnoe programmirovanie: metody gradientnogo tipa”, Avtomatika i telemekhanika, 1997, no. 8, 1337–1347 | MR | Zbl

[3] A. S. Antipin, “Ekstraproksimalnyi metod resheniya ravnovesnykh i igrovykh zadach (so svyazannymi peremennymi)”, Zhurn. vychisl. matematiki i mat. fiziki, 45:11 (2005), 1974–1995 | MR

[4] O. V. Vasilev, A. V. Arguchintsev, Metody optimizatsii v zadachakh i uprazhneniyakh, Fizmatlit, M., 1999, 208 pp. | Zbl

[5] F. P. Vasilev, Metody optimizatsii, Faktorial Press, M., 2002, 824 pp.

[6] E. G. Golshtein, N. V. Tretyakov, Modifitsirovannye funktsii Lagranzha, Nauka, M., 1989, 400 pp. | MR

[7] A. N. Kolmogorov, S. V. Fomin, Elementy teorii funktsii i funktsionalnogo analiza, Fizmatlit, M., 2009, 572 pp.

[8] B. T. Polyak, Vvedenie v optimizatsiyu, Nauka, M., 1983, 384 pp. | MR

[9] V. A. Srochko, Iteratsionnye metody resheniya zadach optimalnogo upravleniya, Fizmatlit, M., 2000, 160 pp.