Search of generalized solutions to improper linear and convex programming problems using barrier functions
The Bulletin of Irkutsk State University. Series Mathematics, Tome 4 (2011) no. 2, pp. 134-146 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We propose to seek generalized solutions to improper linear and convex mathematical programs of 1-th kind by means a special combination of both inner and external penalty functions. The algorithm schemas and convergence theorems are presented.
Keywords: improper mathematical programming problems, optimal correction methods, penalty functions, central path.
@article{IIGUM_2011_4_2_a10,
     author = {L. D. Popov},
     title = {Search of generalized solutions to improper linear and convex programming problems using barrier functions},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {134--146},
     year = {2011},
     volume = {4},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2011_4_2_a10/}
}
TY  - JOUR
AU  - L. D. Popov
TI  - Search of generalized solutions to improper linear and convex programming problems using barrier functions
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2011
SP  - 134
EP  - 146
VL  - 4
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2011_4_2_a10/
LA  - ru
ID  - IIGUM_2011_4_2_a10
ER  - 
%0 Journal Article
%A L. D. Popov
%T Search of generalized solutions to improper linear and convex programming problems using barrier functions
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2011
%P 134-146
%V 4
%N 2
%U http://geodesic.mathdoc.fr/item/IIGUM_2011_4_2_a10/
%G ru
%F IIGUM_2011_4_2_a10
L. D. Popov. Search of generalized solutions to improper linear and convex programming problems using barrier functions. The Bulletin of Irkutsk State University. Series Mathematics, Tome 4 (2011) no. 2, pp. 134-146. http://geodesic.mathdoc.fr/item/IIGUM_2011_4_2_a10/

[1] E. G. Golshtein, Teoriya dvoistvennosti v matematicheskom programmirovanii i ee prilozheniya, Nauka, M., 1971, 352 pp. | MR

[2] I. I. Eremin, “Dvoistvennost dlya nesobstvennykh zadach lineinogo i vypuklogo programmirovaniya”, Dokl. AN SSSR, 256:2 (1981), 272–276 | MR | Zbl

[3] I. I. Eremin, Vl. D. Mazurov, N. N. Astafev, Nesobstvennye zadachi lineinogo i vypuklogo programmirovaniya, Nauka, M., 1983, 336 pp. | MR

[4] I. I. Eremin, Protivorechivye modeli optimalnogo planirovaniya, Nauka, M., 1988, 160 pp. | MR

[5] Issledovaniya po nesobstvennym zadacham optimizatsii, sb. st., UrO AN SSSR, Sverdlovsk, 1988, 78 pp.

[6] Neregulyarnaya dvoistvennost v matematicheskom programmirovanii, sb. st., UrO AN SSSR, Sverdlovsk, 1990, 78 pp.

[7] Yu. E. Nesterov, Effektivnye metody v nelineinom programmirovanii, Radio i svyaz, M., 1989, 304 pp.

[8] Parametricheskaya optimizatsiya i metody approksimatsii nesobstvennykh zadach matematicheskogo programmirovaniya, sb. st., UNTs AN SSSR, Sverdlovsk, 1985, 136 pp. | MR

[9] L. D. Popov, “Primenenie modifitsirovannogo prox-metoda dlya optimalnoi korrektsii nesobstvennykh zadach vypuklogo programmirovaniya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 3, no. 2, 1995, 261–266 | MR | Zbl

[10] L. D. Popov, “Simmetricheskie sistemy i feierovskie protsessy dlya nesobstvennykh zadach lineinogo programmirovaniya”, Metody optimizatsii i ikh prilozheniya, Tr. XIII mezhdunar. Baikalskoi shk.-seminara, v. 1, ISEM SO RAN, Irkutsk, 2005, 141–146

[11] R. T. Rokafellar, Vypuklyi analiz, Nauka, M., 1973, 472 pp.

[12] V. D. Skarin, “O metode barernykh funktsii i algoritmakh korrektsii nesobstvennykh zadach vypuklogo programmirovaniya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 14, no. 2, 2008, 115–128 | MR | Zbl

[13] A. Fiakko, G. Mak-Kormik, Nelineinoe programmirovanie. Metody posledovatelnoi bezuslovnoi minimizatsii, Mir, M., 1972, 240 pp. | MR

[14] I. I. Eremin, Theory of linear optimization, Ser. Inverse and Ill-Posed Problems, VSP, Utrecht, 2002, 336 pp. | MR

[15] C. Roos, T. Terlaky, J.-Ph. Vial, Theory and algorithms for linear optimization, John Wiley Sons Ltd., Chichester, 1997, 484 pp. | MR