@article{IIGUM_2011_4_2_a10,
author = {L. D. Popov},
title = {Search of generalized solutions to improper linear and convex programming problems using barrier functions},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {134--146},
year = {2011},
volume = {4},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2011_4_2_a10/}
}
TY - JOUR AU - L. D. Popov TI - Search of generalized solutions to improper linear and convex programming problems using barrier functions JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2011 SP - 134 EP - 146 VL - 4 IS - 2 UR - http://geodesic.mathdoc.fr/item/IIGUM_2011_4_2_a10/ LA - ru ID - IIGUM_2011_4_2_a10 ER -
%0 Journal Article %A L. D. Popov %T Search of generalized solutions to improper linear and convex programming problems using barrier functions %J The Bulletin of Irkutsk State University. Series Mathematics %D 2011 %P 134-146 %V 4 %N 2 %U http://geodesic.mathdoc.fr/item/IIGUM_2011_4_2_a10/ %G ru %F IIGUM_2011_4_2_a10
L. D. Popov. Search of generalized solutions to improper linear and convex programming problems using barrier functions. The Bulletin of Irkutsk State University. Series Mathematics, Tome 4 (2011) no. 2, pp. 134-146. http://geodesic.mathdoc.fr/item/IIGUM_2011_4_2_a10/
[1] E. G. Golshtein, Teoriya dvoistvennosti v matematicheskom programmirovanii i ee prilozheniya, Nauka, M., 1971, 352 pp. | MR
[2] I. I. Eremin, “Dvoistvennost dlya nesobstvennykh zadach lineinogo i vypuklogo programmirovaniya”, Dokl. AN SSSR, 256:2 (1981), 272–276 | MR | Zbl
[3] I. I. Eremin, Vl. D. Mazurov, N. N. Astafev, Nesobstvennye zadachi lineinogo i vypuklogo programmirovaniya, Nauka, M., 1983, 336 pp. | MR
[4] I. I. Eremin, Protivorechivye modeli optimalnogo planirovaniya, Nauka, M., 1988, 160 pp. | MR
[5] Issledovaniya po nesobstvennym zadacham optimizatsii, sb. st., UrO AN SSSR, Sverdlovsk, 1988, 78 pp.
[6] Neregulyarnaya dvoistvennost v matematicheskom programmirovanii, sb. st., UrO AN SSSR, Sverdlovsk, 1990, 78 pp.
[7] Yu. E. Nesterov, Effektivnye metody v nelineinom programmirovanii, Radio i svyaz, M., 1989, 304 pp.
[8] Parametricheskaya optimizatsiya i metody approksimatsii nesobstvennykh zadach matematicheskogo programmirovaniya, sb. st., UNTs AN SSSR, Sverdlovsk, 1985, 136 pp. | MR
[9] L. D. Popov, “Primenenie modifitsirovannogo prox-metoda dlya optimalnoi korrektsii nesobstvennykh zadach vypuklogo programmirovaniya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 3, no. 2, 1995, 261–266 | MR | Zbl
[10] L. D. Popov, “Simmetricheskie sistemy i feierovskie protsessy dlya nesobstvennykh zadach lineinogo programmirovaniya”, Metody optimizatsii i ikh prilozheniya, Tr. XIII mezhdunar. Baikalskoi shk.-seminara, v. 1, ISEM SO RAN, Irkutsk, 2005, 141–146
[11] R. T. Rokafellar, Vypuklyi analiz, Nauka, M., 1973, 472 pp.
[12] V. D. Skarin, “O metode barernykh funktsii i algoritmakh korrektsii nesobstvennykh zadach vypuklogo programmirovaniya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 14, no. 2, 2008, 115–128 | MR | Zbl
[13] A. Fiakko, G. Mak-Kormik, Nelineinoe programmirovanie. Metody posledovatelnoi bezuslovnoi minimizatsii, Mir, M., 1972, 240 pp. | MR
[14] I. I. Eremin, Theory of linear optimization, Ser. Inverse and Ill-Posed Problems, VSP, Utrecht, 2002, 336 pp. | MR
[15] C. Roos, T. Terlaky, J.-Ph. Vial, Theory and algorithms for linear optimization, John Wiley Sons Ltd., Chichester, 1997, 484 pp. | MR