Method of monotone majorants of the theory of nonlinear Volterra equations
The Bulletin of Irkutsk State University. Series Mathematics, Tome 4 (2011) no. 1, pp. 109-117 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The authors have constructed the main solutions of nonlinear operator-integral equations of Volterra in sense of Kantorovich. Convergence of the successive approximations is established through studies of majorants of integral and algebraic equations. Estimates are given for the solutions and for the intervals on which right margin the solution has the blow-up limit or start branching.
Mots-clés : majorants
Keywords: Volterra operator-integral equations, blow-up limit, successive approximations.
@article{IIGUM_2011_4_1_a9,
     author = {D. N. Sidorov},
     title = {Method of monotone majorants of the theory of nonlinear {Volterra} equations},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {109--117},
     year = {2011},
     volume = {4},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2011_4_1_a9/}
}
TY  - JOUR
AU  - D. N. Sidorov
TI  - Method of monotone majorants of the theory of nonlinear Volterra equations
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2011
SP  - 109
EP  - 117
VL  - 4
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2011_4_1_a9/
LA  - ru
ID  - IIGUM_2011_4_1_a9
ER  - 
%0 Journal Article
%A D. N. Sidorov
%T Method of monotone majorants of the theory of nonlinear Volterra equations
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2011
%P 109-117
%V 4
%N 1
%U http://geodesic.mathdoc.fr/item/IIGUM_2011_4_1_a9/
%G ru
%F IIGUM_2011_4_1_a9
D. N. Sidorov. Method of monotone majorants of the theory of nonlinear Volterra equations. The Bulletin of Irkutsk State University. Series Mathematics, Tome 4 (2011) no. 1, pp. 109-117. http://geodesic.mathdoc.fr/item/IIGUM_2011_4_1_a9/

[1] A. S. Apartsin, “Ob ekvivalentnykh normakh v teorii polinomialnykh integralnykh uravnenii Volterra I roda”, Izv. Irkut. gos. Un-ta. Ser.: Matematika, 3:1 (2010), 19–29

[2] A. S. Apartsin, Neklassicheskie uravneniya Volterra pervogo roda. Teoriya i chislennye metody, Nauka. Sibirskaya izdatelskaya firma RAN, Novosibirsk, 1999

[3] M. M. Vainberg, V. A. Trenogin, Teoriya vetvleniya reshenii nelineinykh uravnenii, Nauka, M., 1969 | MR

[4] V. S. Vladimirov, Uravneniya matematicheskoi fiziki, Nauka, M., 1988, 512 pp. | MR

[5] L. V. Kantorovich, B. Z. Vulikh, A. G. Pinsker, Funktsionalnyi analiz v poluuporyadochennykh prostranstvakh, M.–L., 1950

[6] N. A. Sidorov, D. N. Sidorov, “Suschestvovanie i postroenie obobschennykh reshenii nelineinykh integralnykh uravnenii Volterry pervogo roda”, Differents. uravneniya, 42:9 (2006), 1243–1247 | MR | Zbl

[7] D. N. Sidorov, N. A. Sidorov, “Obobschennye resheniya polinomialnykh integralnykh uravnenii pervogo roda v odnoi modeli nelineinoi dinamiki”, Avtomatika i telemekhanika, 2011 (to appear)

[8] D. N. Sidorov, “Modelirovanie nelineinykh nestatsionarnykh dinamicheskikh sistem ryadami Volterra: identifikatsiya i prilozheniya”, Sib. zhurn. industr. matematiki, 3:1 (2000), 182–194 | MR | Zbl

[9] V. A. Trenogin, Obyknovennye differentsialnye uravneniya, Fizmatlit, M., 2009, 311 pp. | MR

[10] S. A. Belbas, Y. Bulka, “Numerical solution of multiple nonlinear Volterra integral equations”, Applied Mathematics and Computation, 217:9 (2011), 4791–4804 | DOI | MR | Zbl

[11] L. Lichtenstein, Vorlesungen über einige Klassen nichtlinearer Integralgleichungen und Integro-differentialgleichungen nebst Anwendungen, Julius Springer, Berlin, 1931 | Zbl

[12] D. N. Sidorov, N. A. Sidorov, Convex Majorants Method in the Theory of Nonlinear Volterra Equations, arXiv: 1101.3963v2 [math.DS]