Method of monotone majorants of the theory of nonlinear Volterra equations
The Bulletin of Irkutsk State University. Series Mathematics, Tome 4 (2011) no. 1, pp. 97-108
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The authors have constructed the main solutions of nonlinear operator-integral equations of Volterra in sense of Kantorovich. Convergence of the successive approximations is established through studies of majorants of integral and algebraic equations. Estimates are given for the solutions and for the intervals on which right margin the solution has the blow-up limit or start branching.
Mots-clés : majorants
Keywords: Volterra operator-integral equations, blow-up limit, successive approximations.
@article{IIGUM_2011_4_1_a8,
     author = {D. N. Sidorov and N. A. Sidorov},
     title = {Method of monotone majorants of the theory of nonlinear {Volterra} equations},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {97--108},
     year = {2011},
     volume = {4},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2011_4_1_a8/}
}
TY  - JOUR
AU  - D. N. Sidorov
AU  - N. A. Sidorov
TI  - Method of monotone majorants of the theory of nonlinear Volterra equations
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2011
SP  - 97
EP  - 108
VL  - 4
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2011_4_1_a8/
LA  - ru
ID  - IIGUM_2011_4_1_a8
ER  - 
%0 Journal Article
%A D. N. Sidorov
%A N. A. Sidorov
%T Method of monotone majorants of the theory of nonlinear Volterra equations
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2011
%P 97-108
%V 4
%N 1
%U http://geodesic.mathdoc.fr/item/IIGUM_2011_4_1_a8/
%G ru
%F IIGUM_2011_4_1_a8
D. N. Sidorov; N. A. Sidorov. Method of monotone majorants of the theory of nonlinear Volterra equations. The Bulletin of Irkutsk State University. Series Mathematics, Tome 4 (2011) no. 1, pp. 97-108. http://geodesic.mathdoc.fr/item/IIGUM_2011_4_1_a8/

[1] A. S. Apartsin, “Ob ekvivalentnykh normakh v teorii polinomialnykh integralnykh uravnenii Volterra I roda”, Izv. Irkut. gos. un-ta. Ser.: Matematika, 3:1 (2010), 19–29

[2] E. A. Barbashin, Vvedenie v teoriyu ustoichivosti, Nauka, M., 1967, 223 pp. | Zbl

[3] E. A. Grebenikov, Yu. A. Ryabov, Konstruktivnye metody analiza nelineinykh sistem, Nauka. Fizmatlit, M., 1978 | MR

[4] V. A. Ilin, V. A. Sadovnichii, Bl. X. Sendov, Matematicheskii analiz, Nauka, M., 1979, 713 pp. | MR

[5] L. V. Kantorovich, B. Z. Vulikh, A. G. Pinsker, Funktsionalnyi analiz v poluuporyadochennykh prostranstvakh, Gostekhizdat, M.–L., 1950

[6] L. V. Kantorovich, “O funktsionalnykh uravneniyakh”, Uchen. zap. LGU, 3:7 (1937)

[7] V. A. Trenogin, Funktsionalnyi analiz, Nauka, M., 1993, 439 pp. | MR | Zbl

[8] G. E. Shilov, G. L. Gurevich, Integral, mera i proizvodnaya, Nauka, M., 1967, 220 pp.

[9] S. A. Belbas, Yuriy Bulka, “Numerical solution of multiple nonlinear Volterra integral equations”, Applied Mathematics and Computation, 217:9 (2011), 4791–4804 | DOI | MR | Zbl

[10] N. Sidorov, B. Loginov, A. Sinitsyn, M. Falaleev, Lyapunov–Schmidt methods in nonlinear analysis and applications, Kluwer Academic Publishers, Dordrecht–Boston–London, 2002, 568 pp. | MR | Zbl