The parameterization method for optimizing the systems which have integro-differential equations
The Bulletin of Irkutsk State University. Series Mathematics, Tome 4 (2011) no. 1, pp. 44-56
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The parameterization method (It was created for solving optimal control problems) is specified for variational problems with Volterra integro-differential equations. The approximation solution is a variational spline.
Keywords: integro-differential equations; optimization; the parameterization method.
@article{IIGUM_2011_4_1_a4,
     author = {I. V. Lutoshkin},
     title = {The parameterization method for optimizing the systems which have integro-differential equations},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {44--56},
     year = {2011},
     volume = {4},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2011_4_1_a4/}
}
TY  - JOUR
AU  - I. V. Lutoshkin
TI  - The parameterization method for optimizing the systems which have integro-differential equations
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2011
SP  - 44
EP  - 56
VL  - 4
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2011_4_1_a4/
LA  - ru
ID  - IIGUM_2011_4_1_a4
ER  - 
%0 Journal Article
%A I. V. Lutoshkin
%T The parameterization method for optimizing the systems which have integro-differential equations
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2011
%P 44-56
%V 4
%N 1
%U http://geodesic.mathdoc.fr/item/IIGUM_2011_4_1_a4/
%G ru
%F IIGUM_2011_4_1_a4
I. V. Lutoshkin. The parameterization method for optimizing the systems which have integro-differential equations. The Bulletin of Irkutsk State University. Series Mathematics, Tome 4 (2011) no. 1, pp. 44-56. http://geodesic.mathdoc.fr/item/IIGUM_2011_4_1_a4/

[1] A. F. Verlan, B. C. Sizikov, Integralnye uravneniya: metody, algoritmy, programmy, sprav. posobie, Naukova dumka, Kiev, 1986 | MR

[2] V. K. Gorbunov, “O svedenii zadach optimalnogo upravleniya k konechnomernym”, Zhurn. vychisl. matematiki i mat. fiziki, 18:5 (1978), 1083–1095 | MR | Zbl

[3] V. K. Gorbunov, “Metod parametrizatsii zadach optimalnogo upravleniya”, Zhurn. vychisl. matematiki i mat. fiziki, 19:2 (1979), 292–303 | MR | Zbl

[4] V. K. Gorbunov, I. V. Lutoshkin, “Razvitie i opyt primeneniya metoda parametrizatsii v vyrozhdennykh zadachakh dinamicheskoi optimizatsii”, Izv. RAN. Ser.: Teoriya i sistemy upravleniya, 2004, no. 5, 67–84 | MR

[5] M. Dzhdeed, Metody i algoritmy optimalnogo upravleniya sistemami, opisyvaemymi integro-differentsialnymi uravneniyami, Dis. ... kand. fiz.-mat. nauk, Tver, 2004, 114 pp.

[6] A. I. Egorov, Matematicheskie metody optimizatsii protsessov teploprovodnosti i diffuzii, Ilim, Frunze, 1990

[7] I. V. Lutoshkin, I. E. Dergunov, “Metod parametrizatsii dlya optimizatsii sistem, predstavlyaemykh integro-differentsialnymi uravneniyami”, Tr. SVMO, 12:4 (2010), 116–126

[8] I. V. Lutoshkin, A. I. Tonkikh, “Metod parametrizatsii dlya modelirovaniya upravlyaemykh sistem s tochechnym zapazdyvaniem”, Avtomatizatsiya protsessov upravleniya, 2010, no. 4

[9] V. P. Maksimov, “Nekotorye problemy regulyarizatsii pereopredelennykh kraevykh zadach ekonomicheskoi dinamiki”, Matematicheskoe modelirovanie, 9:2 (1997), 57–65 | MR | Zbl

[10] Yu. A. Pustarnakova, “Optimizatsiya protsessa obucheniya iskusstvennoi neironnoi seti, opisyvaemoi sistemoi integro-differentsialnykh uravnenii”, Metody optimizatsii i ikh prilozheniya, Tr. 12-i Baik. Mezhdunar. konf. (Irkutsk, 2001), v. 2, 134–138

[11] C. Durazzi, E. Galligani, “Nonlinear programming methods for solving optimal control problems”, Nonconvex Optimization and Its Applications. Equilibrium Problems: Nonsmooth Optimization and Variational Inequality Models, Kluwer Academic Publishers, Netherlands, 2001, 71–99 | MR | Zbl

[12] V. Gorbunov, I. Lutoshkin, “The parameterization method in singular differential-algebraic equations”, Computational Science, ICCS 2003, LNCS, 2658, eds. P. Slot et al., Springer, 2003 | MR

[13] V. Gorbunov, I. Lutoshkin, “The parameterization method in optimal control problems and differential-algebraic equations”, Journal of computational and applied mathematics, 185:2 (2006), 377–390 | DOI | MR | Zbl

[14] V. K. Gorbunov, I. V. Lutoshkin, Y. V. Martynenko, “A parametrization method for the numerical solution of singular differential equations”, Applied Numerical Mathematics, 59 (2009), 639–655 | DOI | MR | Zbl

[15] M. I. Kamien, E. Muller, “Optimal Control with Integral State”, Equations The Review of Economic Studies, 43:3 (1976), 469–473 | DOI

[16] Wei Yuan, Tao Tang, “The Numerical Analysis of Implicit Runge–Kutta Methods for a Certain Nonlinear Integro-Differential Equation”, Mathematics of Computation, 54:189 (1990), 155–168 | DOI | MR | Zbl