Implicit operator theorems under group symmetry conditions
The Bulletin of Irkutsk State University. Series Mathematics, Tome 4 (2011) no. 1, pp. 31-43
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

On the base of the general theorem about the inheritance of nonlinear problem group symmetry by the relevant branching equation and branching equation in the root-subspace $G$-invariant implicit operator theorems are proved for stationary and nonstationary bifurcation problems without assumtion on compactness of allowing group.
Keywords: Lyapounov–Schmidt method, branching equation, branching equation in the root-subspaces, group symmetry.
@article{IIGUM_2011_4_1_a3,
     author = {B. V. Loginov and I. V. Konopleva and Y. B. Rousak},
     title = {Implicit operator theorems under group symmetry conditions},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {31--43},
     year = {2011},
     volume = {4},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2011_4_1_a3/}
}
TY  - JOUR
AU  - B. V. Loginov
AU  - I. V. Konopleva
AU  - Y. B. Rousak
TI  - Implicit operator theorems under group symmetry conditions
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2011
SP  - 31
EP  - 43
VL  - 4
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2011_4_1_a3/
LA  - ru
ID  - IIGUM_2011_4_1_a3
ER  - 
%0 Journal Article
%A B. V. Loginov
%A I. V. Konopleva
%A Y. B. Rousak
%T Implicit operator theorems under group symmetry conditions
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2011
%P 31-43
%V 4
%N 1
%U http://geodesic.mathdoc.fr/item/IIGUM_2011_4_1_a3/
%G ru
%F IIGUM_2011_4_1_a3
B. V. Loginov; I. V. Konopleva; Y. B. Rousak. Implicit operator theorems under group symmetry conditions. The Bulletin of Irkutsk State University. Series Mathematics, Tome 4 (2011) no. 1, pp. 31-43. http://geodesic.mathdoc.fr/item/IIGUM_2011_4_1_a3/

[1] I. V. Konopleva, B. V. Loginov, Yu. B. Rusak, “Simmetriya i potentsialnost uravnenii razvetvleniya v kornevykh podprostranstvakh v neyavno zadannykh statsionarnykh i dinamicheskikh bifurkatsionnykh zadachakh”, Izv. vysshikh ucheb. zavedenii. Sev.-Kavkaz. region. Estestvennye nauki, 2009, Spetsvypusk, 115–124

[2] I. V. Konopleva, B. V. Loginov, Yu. B. Rusak, “Simmetriya i potentsialnost uravnenii razvetvleniya v kornevykh podprostranstvakh v neyavno zadannykh statsionarnykh bifurkatsionnykh zadachakh”, Analiticheskie metody analiza i differentsialnykh uravnenii AMADE, Tr. 5-i mezhdunar. konf. (Belarus, Minsk, 14–19 sentyabrya 2009 g.), v. 1, 2009, 90–95 | MR

[3] Doklady Mathematics, 80:1 (2009), 541–546 | DOI | MR | Zbl

[4] B. V. Loginov, I. V. Konopleva, Yu. B. Rusak, “Simmetriya i potentsialnost v obschei zadache teorii vetvleniya”, Izv. vuzov. Matematika, 2006, no. 4(527), 30–40 | MR | Zbl

[5] B. V. Loginov, “Obschaya zadacha teorii vetvleniya v usloviyakh gruppovoi simmetrii”, Uzbek. mat. zhurn., 1991, no. 1, 38–44

[6] N. I. Makarenko, “O vetvlenii reshenii invariantnykh variatsionnykh uravnenii”, DAN. Matematika, 348:3 (1996), 302–304 | MR | Zbl

[7] N. I. Makarenko, “Simmetriya i kosimmetriya variatsionnykh zadach v teorii voln”, Primenenie simmetrii i kosimmetrii v teorii bifurkatsii i fazovykh perekhodov, Tr. mezhdunar. shkoly-seminara (Sochi, 14–18 sentyabrya 2001 g.), Rostov. gos. un-t, Rostov n/D., 2001, 109–120

[8] B. V. Loginov, O. V. Makeev, I. V. Konopleva, Yu. B. Rousak, “Bifurcation and symmetry in differential equations non-resolved with respect to derivative”, ROMAI J., 3:1 (2007), 151–173 | MR | Zbl