Mots-clés : Jordan set, distribution
@article{IIGUM_2011_4_1_a10,
author = {M. V. Falaleev and S. S. Orlov},
title = {Integro-differential equations with degeneration in {Banach} spaces and it's applications in mathematical theory of elasticity},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {118--134},
year = {2011},
volume = {4},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2011_4_1_a10/}
}
TY - JOUR AU - M. V. Falaleev AU - S. S. Orlov TI - Integro-differential equations with degeneration in Banach spaces and it's applications in mathematical theory of elasticity JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2011 SP - 118 EP - 134 VL - 4 IS - 1 UR - http://geodesic.mathdoc.fr/item/IIGUM_2011_4_1_a10/ LA - ru ID - IIGUM_2011_4_1_a10 ER -
%0 Journal Article %A M. V. Falaleev %A S. S. Orlov %T Integro-differential equations with degeneration in Banach spaces and it's applications in mathematical theory of elasticity %J The Bulletin of Irkutsk State University. Series Mathematics %D 2011 %P 118-134 %V 4 %N 1 %U http://geodesic.mathdoc.fr/item/IIGUM_2011_4_1_a10/ %G ru %F IIGUM_2011_4_1_a10
M. V. Falaleev; S. S. Orlov. Integro-differential equations with degeneration in Banach spaces and it's applications in mathematical theory of elasticity. The Bulletin of Irkutsk State University. Series Mathematics, Tome 4 (2011) no. 1, pp. 118-134. http://geodesic.mathdoc.fr/item/IIGUM_2011_4_1_a10/
[1] M. M. Vainberg, V. A. Trenogin, Teoriya vetvleniya reshenii nelineinykh uravnenii, Nauka, M., 1969, 528 pp. | MR
[2] V. S. Vladimirov, Obobschennye funktsii v matematicheskoi fizike, Nauka, M., 1979, 320 pp. | MR
[3] B. V. Loginov, Yu. B. Rusak, “Obobschennaya zhordanova struktura v teorii vetvleniya”, Pryamye i obratnye zadachi dlya differentsialnykh uravnenii v chastnykh proizvodnykh i ikh prilozheniya, FAN, Tashkent, 1978, 133–148 | MR
[4] N. A. Sidorov, M. V. Falaleev, “Obobschennye resheniya differentsialnykh uravnenii s fredgolmovym operatorom pri proizvodnoi”, Differents. uravneniya, 23:4 (1987), 726–728 | MR | Zbl
[5] M. V. Falaleev, “O prilozheniyakh teorii fundamentalnykh operator-funktsii vyrozhdennykh integro-differentsialnykh operatorov v banakhovykh prostranstvakh”, Neklassicheskie uravneniya matematicheskoi fiziki, Izd-vo IM im. S. L. Soboleva SO RAN, Novosibirsk, 283–297
[6] M. V. Falaleev, S. S. Orlov, “Nachalno-kraevye zadachi dlya integro-differentsialnykh uravnenii vyazkouprugosti”, Obozrenie prikladnoi i promyshlennoi matematiki, 17:4 (2010), 597–600 | MR
[7] M. M. Cavalcanti, V. N. Domingos Cavalcanti, J. Ferreira, “Existence and Uniform Decay for a Non-Linear Viscoelastic Equation with Strong Damping”, Math. Meth. Appl. Sci., 24 (2001), 1043–1053 | DOI | MR | Zbl
[8] N. Sidorov, B. Loginov, A. Sinitsyn, M. Falaleev, Lyapunov–Schmidt Methods in Nonlinear Analysis and Applications, Kluwer Acad. Publ., Dordrecht–Boston–London, 2002, 548 pp. | MR | Zbl
[9] J. E. Munoz Rivera, L. H. Fatori, “Regularizing Properties and Propagations of Singularities for Thermoelastic Plates”, Math. Meth. Appl. Sci., 21 (1998), 797–821 | 3.0.CO;2-D class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[10] R. Racke, “Asymptotic Behavior of Solutions in Linear 2- or 3-d Thermoelasticity with Second Sound”, Quart Appl. Math., 61 (2003), 409–441 | MR