The Showalter–Sidorov problem for the Hoff model on a geometric graph
The Bulletin of Irkutsk State University. Series Mathematics, Tome 4 (2011) no. 1, pp. 2-8
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Showalter–Sidorov problem for the generalized Hoff equations given on a finite connected oriented graph is investigated in this paper. The morphology of the phase space is investigated and conditions under which the Showalter–Sidorov problem has a uniqueness solution are found.
Mots-clés : Sobolev type equation
Keywords: phase space, the Showalter–Sidorov problem, Hoff equation.
@article{IIGUM_2011_4_1_a0,
     author = {A. A. Bayazitova},
     title = {The {Showalter{\textendash}Sidorov} problem for the {Hoff} model on a geometric graph},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {2--8},
     year = {2011},
     volume = {4},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2011_4_1_a0/}
}
TY  - JOUR
AU  - A. A. Bayazitova
TI  - The Showalter–Sidorov problem for the Hoff model on a geometric graph
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2011
SP  - 2
EP  - 8
VL  - 4
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2011_4_1_a0/
LA  - ru
ID  - IIGUM_2011_4_1_a0
ER  - 
%0 Journal Article
%A A. A. Bayazitova
%T The Showalter–Sidorov problem for the Hoff model on a geometric graph
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2011
%P 2-8
%V 4
%N 1
%U http://geodesic.mathdoc.fr/item/IIGUM_2011_4_1_a0/
%G ru
%F IIGUM_2011_4_1_a0
A. A. Bayazitova. The Showalter–Sidorov problem for the Hoff model on a geometric graph. The Bulletin of Irkutsk State University. Series Mathematics, Tome 4 (2011) no. 1, pp. 2-8. http://geodesic.mathdoc.fr/item/IIGUM_2011_4_1_a0/

[1] A. A. Bayazitova, “Zadacha Shturma–Liuvillya na geometricheskom grafe”, Vestn. YuUrGU. Ser.: Matematicheskoe modelirovanie i programmirovanie, 2010, no. 16(192), 4–10 | Zbl

[2] Kh. Gaevskii, K. Greger, K. Zakharias, Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Nauka, M., 1978

[3] Yu. V. Pokornyi, O. M. Penkin, V. L. Pryadiev, A. V. Borovskikh, K. P. Lazarev, S. A. Shabrov, Differentsialnye uravneniya na geometricheskikh grafakh, Fizmatlit, M., 2004, 272 pp. | MR | Zbl

[4] S. A. Zagrebina, “Zadacha Shouoltera–Sidorova dlya uravneniya sobolevskogo tipa na grafe”, Optimizatsiya, upravlenie, intellekt, 2006, no. 1(12), 42–49

[5] S. Leng, Vvedenie v teoriyu differentsiruemykh mnogoobrazii, Platon, Volgograd, 1996

[6] A. G. Sveshnikov, A. B. Alshin, M. O. Korpusov, Yu. D. Pletner, Lineinye i nelineinye uravneniya sobolevskogo tipa, Fizmatlit, M., 2007

[7] G. A. Sviridyuk, “Uravneniya sobolevskogo tipa na grafakh”, Neklassicheskie uravneniya matematicheskoi fiziki, IM SO RAN, Novosibirsk, 2002, 221–225 | Zbl

[8] G. A. Sviridyuk, A. A. Bayazitova, “O pryamoi i obratnoi zadachakh dlya uravnenii Khoffa na grafe”, Vestn. Samar. gos. tekhn. un-ta. Ser.: Fiz.-mat. nauki, 2009, no. 1(18), 6–17 | DOI

[9] V. V. Shemetova, Issledovanie odnogo klassa uravnenii sobolevskogo tipa na grafakh, Dis. ... kand. fiz.-mat. nauk, Magnitogorsk, 2005

[10] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht–Boston–Tokyo, 2003 | MR | Zbl