Standard forms of multioperations in superclones
The Bulletin of Irkutsk State University. Series Mathematics, Tome 3 (2010) no. 4, pp. 88-95 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In article standard forms of representation of multioperations are studied the key standard form multioperations, in particular, is defined and the algorithm of its finding in superclones is presented.
Keywords: multioperation, the standard form, algorithm, crossing, superclone.
@article{IIGUM_2010_3_4_a9,
     author = {N. A. Peryazev},
     title = {Standard forms of multioperations in superclones},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {88--95},
     year = {2010},
     volume = {3},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2010_3_4_a9/}
}
TY  - JOUR
AU  - N. A. Peryazev
TI  - Standard forms of multioperations in superclones
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2010
SP  - 88
EP  - 95
VL  - 3
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2010_3_4_a9/
LA  - ru
ID  - IIGUM_2010_3_4_a9
ER  - 
%0 Journal Article
%A N. A. Peryazev
%T Standard forms of multioperations in superclones
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2010
%P 88-95
%V 3
%N 4
%U http://geodesic.mathdoc.fr/item/IIGUM_2010_3_4_a9/
%G ru
%F IIGUM_2010_3_4_a9
N. A. Peryazev. Standard forms of multioperations in superclones. The Bulletin of Irkutsk State University. Series Mathematics, Tome 3 (2010) no. 4, pp. 88-95. http://geodesic.mathdoc.fr/item/IIGUM_2010_3_4_a9/

[1] V. G. Bondarchuk, L. A. Kaluzhnin, V. N. Kotov, B. A. Romov, “Teoriya Galua dlya algebr Posta”, Kibernetika, 1969, no. 3, 1–10; No 5, 1–9

[2] A. I. Maltsev, Iterativnye algebry Posta, Novosibirskii gosudarstvennyi universitet, Novosibirsk, 1976, 100 pp. | MR

[3] N. A. Peryazev, “Klony, ko-klony, giperklony i superklony”, Uch. zap. Kazan. gos. un-ta. Ser.: Fiziko-matematicheskie nauki, 151:2 (2009), 120–125 | Zbl

[4] N. A. Peryazev, “Superklony multioperatsii”, Diskretnye sistemy v teorii upravlyayuschikh sistem, tr. VIII mezhdunar. konf., MAIS Press, M., 2009, 233–238

[5] N. A. Peryazev, I. A. Yakovchuk, “Minimizatsiya multioperatsii v klasse standartnykh form”, Izv. Irkut. gos. un-ta. Ser.: Matematika, 2:2 (2009), 117–126 | MR

[6] S. V. Yablonskii, “Funktsionalnye postroeniya v k-znachnoi logike”, Tr. mat. in-ta AN SSSR im. V. A. Steklova, 51, 1958, 5–142

[7] D. Lau, Function Algebras on Finite Sets, Springer-Verlag, Berlin, 2006, 668 pp. | MR

[8] B. A. Romov, “The completeness problem in partial hyperclones”, Discrete Mathematics, 306 (2006), 1405–1414 | DOI | MR | Zbl