About some intervals in the lattic of clones of partial ultrafunctions
The Bulletin of Irkutsk State University. Series Mathematics, Tome 3 (2010) no. 4, pp. 80-87
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The intervals between the clone of function, saving 0 (1) and the clone of all partial ultrafunctions are considered in the lattic of clones of partial ultrafunctions. It`s showing that such intervals contain 20 clones.
Keywords: clon; multiclon; lattic; superposition; closed set; ultrafunctions; multifunctions.
@article{IIGUM_2010_3_4_a8,
     author = {V. I. Panteleyev and S. Yu. Haltanova},
     title = {About some intervals in the lattic of clones of partial ultrafunctions},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {80--87},
     year = {2010},
     volume = {3},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2010_3_4_a8/}
}
TY  - JOUR
AU  - V. I. Panteleyev
AU  - S. Yu. Haltanova
TI  - About some intervals in the lattic of clones of partial ultrafunctions
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2010
SP  - 80
EP  - 87
VL  - 3
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2010_3_4_a8/
LA  - ru
ID  - IIGUM_2010_3_4_a8
ER  - 
%0 Journal Article
%A V. I. Panteleyev
%A S. Yu. Haltanova
%T About some intervals in the lattic of clones of partial ultrafunctions
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2010
%P 80-87
%V 3
%N 4
%U http://geodesic.mathdoc.fr/item/IIGUM_2010_3_4_a8/
%G ru
%F IIGUM_2010_3_4_a8
V. I. Panteleyev; S. Yu. Haltanova. About some intervals in the lattic of clones of partial ultrafunctions. The Bulletin of Irkutsk State University. Series Mathematics, Tome 3 (2010) no. 4, pp. 80-87. http://geodesic.mathdoc.fr/item/IIGUM_2010_3_4_a8/

[1] V. B. Alekseev, A. A. Voronenko, “O nekotorykh zamknutykh klassakh v chastichnoi dvuznachnoi logike”, Diskretnaya matematika, 6:4 (1994), 58–79 | MR | Zbl

[2] V. I. Panteleev, “Kriterii polnoty dlya doopredelyaemykh bulevykh funktsii”, Vestn. Samar. gos. un-ta. Estestvennonauch. ser., 2009, no. 2 (68), 60–79 | Zbl

[3] R. V. Freivald, “O polnote chastichnykh funktsii algebry logiki”, DAN SSSR, 167:6 (1966), 1249–1250 | MR

[4] E. L. Post, Two-valued iterative systems of mathematical logic, Annals of Math. Studies, 5, Univ. Press, Princeton, 1941, 122 pp. | MR | Zbl