The closed form expression for Schoenheim bound in case $L(p+k,k,k-1)$
The Bulletin of Irkutsk State University. Series Mathematics, Tome 3 (2010) no. 4, pp. 44-47
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper we derive the closed form expression for Schoenheim bound in case $L(p+k,k,k-1)$, where p is prime.
Keywords:
boolean function, ESOP, Turan problem, covering design, Schoenheim bound.
@article{IIGUM_2010_3_4_a4,
author = {K. D. Kirichenko},
title = {The closed form expression for {Schoenheim} bound in case $L(p+k,k,k-1)$},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {44--47},
year = {2010},
volume = {3},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2010_3_4_a4/}
}
TY - JOUR AU - K. D. Kirichenko TI - The closed form expression for Schoenheim bound in case $L(p+k,k,k-1)$ JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2010 SP - 44 EP - 47 VL - 3 IS - 4 UR - http://geodesic.mathdoc.fr/item/IIGUM_2010_3_4_a4/ LA - ru ID - IIGUM_2010_3_4_a4 ER -
K. D. Kirichenko. The closed form expression for Schoenheim bound in case $L(p+k,k,k-1)$. The Bulletin of Irkutsk State University. Series Mathematics, Tome 3 (2010) no. 4, pp. 44-47. http://geodesic.mathdoc.fr/item/IIGUM_2010_3_4_a4/
[1] K. D. Kirichenko, “Verkhnyaya otsenka slozhnosti polinomialnykh normalnykh form bulevykh funktsii”, Diskretnaya matematika, 17:3 (2005), 81–88 | DOI | MR
[2] D. M. Gordon, R. S. Douglas, “Coverings”, Handbook of Combinatorial Designs, Taylor and Francis Group, 2007, 365–373
[3] J. Schoenheim, “On Covering”, Pacific Journal of Mathematics, 14 (1964), 1405–1411 | DOI | MR | Zbl
[4] N. Sloane http://www.research.att.com/ñjas/sequences
[5] P. Turan, “Reseach Problems”, Magyar Tud. Acad. Mat. Kutato Int. Kozl., 6 (1961), 417–423 | MR