Enumerative problems in some matrix rings and finite groups
The Bulletin of Irkutsk State University. Series Mathematics, Tome 3 (2010) no. 4, pp. 21-32 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this article were obtained several new results for the combinatorial numbers which arised earlier in an implicit kind by an enumeration of ideals of nilpotent ring of matrices over finite ring (G.P. Egorychev, V.M. Levchuk, 2001) and also the numbers of pairs of generating projective special linear groups of dimension 2 and the Suzuki groups over finite fields of the characteristic 2 (N. M. Suchkov and D. P. Prihodko, 2001). These results were obtained by authors with the help of the Egorychev's method of integral representation and computing of combinatorial sums (the set of inference rules and the Completeness Lemma) developed by him to the end 1970. Some new problems are put and planned prospect of the further researches.
Keywords: combinatorial sums; the method of coefficients; enumerative problems; matrix rings; finite groups.
@article{IIGUM_2010_3_4_a2,
     author = {G. P. Egorychev and M. N. Davletshin},
     title = {Enumerative problems in some matrix rings and finite groups},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {21--32},
     year = {2010},
     volume = {3},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2010_3_4_a2/}
}
TY  - JOUR
AU  - G. P. Egorychev
AU  - M. N. Davletshin
TI  - Enumerative problems in some matrix rings and finite groups
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2010
SP  - 21
EP  - 32
VL  - 3
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2010_3_4_a2/
LA  - ru
ID  - IIGUM_2010_3_4_a2
ER  - 
%0 Journal Article
%A G. P. Egorychev
%A M. N. Davletshin
%T Enumerative problems in some matrix rings and finite groups
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2010
%P 21-32
%V 3
%N 4
%U http://geodesic.mathdoc.fr/item/IIGUM_2010_3_4_a2/
%G ru
%F IIGUM_2010_3_4_a2
G. P. Egorychev; M. N. Davletshin. Enumerative problems in some matrix rings and finite groups. The Bulletin of Irkutsk State University. Series Mathematics, Tome 3 (2010) no. 4, pp. 21-32. http://geodesic.mathdoc.fr/item/IIGUM_2010_3_4_a2/

[1] Siberian Math. J., 13 (1972)

[2] G. P. Egorychev, Integralnye predstavleniya i vychislenie kombinatornykh summ, Nauka, Novosibirsk, 1977, 285 pp. ; English: Transl. of Math. Monographs, 59, AMS, 1984 ; 2-nd ed., 1989 | Zbl | MR | Zbl

[3] G. P. Egorychev, V. M. Levchuk, “Perechislitelnye problemy dlya grupp i algebr lieva tipa”, Dokl. RAN, 330 (1993), 464–467 | MR | Zbl

[4] D. Yu. Pochekutov, “Diagonali ryadov Lorana ratsionalnykh funktsii”, Sib. mat. zhurn., 50:6 (2009), 1370–1383 | MR | Zbl

[5] V. S. Ryko, Diskretnoe preobrazovanie Mellina, Dep. v VINITI AN SSSR 16.01.79, No 199-79, Vologda, 1979, 7 pp.

[6] N. M. Cuchkov, D. M. Prikhodko, “O chisle par porozhdayuschikh grupp $L_{2}\left( 2^{m}\right) $ i $Sz\left( 2^{2k+1}\right)$”, Sib. mat. zhurn., 42:5 (2001), 1162–1167 | MR

[7] P. Barry, “On integer-sequence-based constructions of generalized Pascal triangles”, Journal of Integer Sequences, 9 (2006), 06.2.4, 1–34 | MR

[8] M. Bona, B. E. Sagan, On divisibility of Narayana numbers by primes, 18 May 2005, 5 pp., arXiv: math/0505382v1 [math.CO] | MR

[9] G. P. Egorychev, “Method coefficients: an algebraic characterization and recent applications”, Advances in combinatorial mathematics, Proceedings of the Waterloo Workshop in computer algebra 2008, devoted to the 70th birthday Georgy Egorychev, eds. I. S. Kotsireas, E. V. Zima, Springer, 2009, 1–30 | DOI | MR | Zbl

[10] G. P. Egorychev, E. V. Zima, “Decomposition and Group Theoretic Characterization of pairs of inverse relations of the Riordan type”, Acta Applicandae Mathematicae, 85 (2005), 93–109 | DOI | MR | Zbl

[11] G. P. Egorychev, V. M. Levchuk, “Enumeration in the Chevalley algebras”, ACM SIGSAM Bulletin, 35 (2001), 20–34 | DOI | Zbl

[12] A. Erfanian, R. Rezaei, “On the Growth Sequences of $PSp(2m,q)$”, Inter. Journal, 1 (2007), 51–62 | MR | Zbl

[13] E. C. Titchmarsh, The theory of the Riemann Zeta-Function, Oxford, 1951 ; E. K. Titchmarsh, Teoriya dzeta-funktsii Rimana, IL, 1953 | MR