On limit models over types in the class of $\omega$-stable theories
The Bulletin of Irkutsk State University. Series Mathematics, Tome 3 (2010) no. 4, pp. 114-120 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An existence of all possible numbers of limit models over types in the class of $\omega$-stable theories is proved.
Keywords: limit model, $\omega$-stable theory.
@article{IIGUM_2010_3_4_a11,
     author = {S. V. Sudoplatov},
     title = {On limit models over types in the class of $\omega$-stable theories},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {114--120},
     year = {2010},
     volume = {3},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2010_3_4_a11/}
}
TY  - JOUR
AU  - S. V. Sudoplatov
TI  - On limit models over types in the class of $\omega$-stable theories
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2010
SP  - 114
EP  - 120
VL  - 3
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2010_3_4_a11/
LA  - ru
ID  - IIGUM_2010_3_4_a11
ER  - 
%0 Journal Article
%A S. V. Sudoplatov
%T On limit models over types in the class of $\omega$-stable theories
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2010
%P 114-120
%V 3
%N 4
%U http://geodesic.mathdoc.fr/item/IIGUM_2010_3_4_a11/
%G ru
%F IIGUM_2010_3_4_a11
S. V. Sudoplatov. On limit models over types in the class of $\omega$-stable theories. The Bulletin of Irkutsk State University. Series Mathematics, Tome 3 (2010) no. 4, pp. 114-120. http://geodesic.mathdoc.fr/item/IIGUM_2010_3_4_a11/

[1] Dzh. Barvais (red.), Spravochnaya kniga po matematicheskoi logike, v. 1, Teoriya modelei, Nauka, M., 1982, 392 pp. | MR

[2] S. V. Sudoplatov, “O moschnykh tipakh v malykh teoriyakh”, Sib. mat. zhurn., 31:4 (1990), 118–128 | MR | Zbl

[3] S. V. Sudoplatov, “Gipergrafy prostykh modelei i raspredeleniya schëtnykh modelei malykh teorii”, Fundamentalnaya i prikladnaya matematika, 15:7 (2009), 179–203 | MR

[4] S. V. Sudoplatov, Problema Lakhlana, Izd-vo NGTU, Novosibirsk, 2009, 336 pp.

[5] S. V. Sudoplatov, E. V. Ovchinnikova, Diskretnaya matematika, uchebnik, Izd-vo NGTU, Novosibirsk, 2010, 280 pp.

[6] S. V. Sudoplatov, E. V. Ovchinnikova, Matematicheskaya logika i teoriya algoritmov, uchebnik, Izd-vo NGTU, Novosibirsk, 2010, 256 pp.

[7] A. H. Lachlan, “On the number of countable models of a countable superstable theory”, Proc. Int. Cong. Logic, Methodology and Philosophy of Science, North-Holland, Amsterdam, 1973, 45–56 | MR

[8] A. Pillay, A note on one-based theories, Preprint, University of Notre Dame, Notre Dame, 1989, 5 pp.

[9] S. Shelah, L. Harrington, M. Makkai, “A proof of Vaught's conjecture for $\omega$-stable theories”, Israel J. Math., 49:1–3 (1984), 259–280 | DOI | MR | Zbl

[10] S. Shelah, Classification theory and the number of non-isomorphic models, North-Holland, Amsterdam, 1990, 705 pp. | MR | Zbl

[11] F. O. Wagner, Simple theories, Kluwer Academic Publishers, Dordrecht–Boston–London, 2000, 260 pp. | MR