A new spectrum of computable models
The Bulletin of Irkutsk State University. Series Mathematics, Tome 3 (2010) no. 4, pp. 7-20

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper we prove that there exist models $\mathfrak A$ and $\mathfrak B$ of an Ehrenfeucht theory such that $\mathfrak A$ is elementary embeddable into $\mathfrak B$, $\mathfrak B$ is elementary embeddable into $\mathfrak A$, model $\mathfrak A$ has a computable presentation, model $\mathfrak B$ has no computable presentation. This theorem together with the work [6] is the key result for the theorem describing co
Keywords: Ehrenfeucht theory; computable model; decidable model; prime model; homogeneous model.
@article{IIGUM_2010_3_4_a1,
     author = {A. N. Gavryushkin},
     title = {A new spectrum of computable models},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {7--20},
     publisher = {mathdoc},
     volume = {3},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2010_3_4_a1/}
}
TY  - JOUR
AU  - A. N. Gavryushkin
TI  - A new spectrum of computable models
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2010
SP  - 7
EP  - 20
VL  - 3
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2010_3_4_a1/
LA  - ru
ID  - IIGUM_2010_3_4_a1
ER  - 
%0 Journal Article
%A A. N. Gavryushkin
%T A new spectrum of computable models
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2010
%P 7-20
%V 3
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIGUM_2010_3_4_a1/
%G ru
%F IIGUM_2010_3_4_a1
A. N. Gavryushkin. A new spectrum of computable models. The Bulletin of Irkutsk State University. Series Mathematics, Tome 3 (2010) no. 4, pp. 7-20. http://geodesic.mathdoc.fr/item/IIGUM_2010_3_4_a1/