On complexity of a particular Boolean functions class
The Bulletin of Irkutsk State University. Series Mathematics, Tome 3 (2010) no. 4, pp. 2-6
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper concerns complexity of polynomial forms (exor-sum-of-products) representing Boolean functions. Complexity is defined as a minimal number of summands in exor-sum-of-products for a given function. A class of Boolean functions being the most complex among Boolean functions having 6 or less arguments is considered. The exact complexity for functions of described class having 7 agruments is obtained.
Keywords:
boolean function, ESOP, exor-sum-of-products, operator, complexity.
Mots-clés : polynomial
Mots-clés : polynomial
@article{IIGUM_2010_3_4_a0,
author = {S. F. Vinokurov and A. S. Kazimirov},
title = {On complexity of a particular {Boolean} functions class},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {2--6},
publisher = {mathdoc},
volume = {3},
number = {4},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2010_3_4_a0/}
}
TY - JOUR AU - S. F. Vinokurov AU - A. S. Kazimirov TI - On complexity of a particular Boolean functions class JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2010 SP - 2 EP - 6 VL - 3 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IIGUM_2010_3_4_a0/ LA - ru ID - IIGUM_2010_3_4_a0 ER -
S. F. Vinokurov; A. S. Kazimirov. On complexity of a particular Boolean functions class. The Bulletin of Irkutsk State University. Series Mathematics, Tome 3 (2010) no. 4, pp. 2-6. http://geodesic.mathdoc.fr/item/IIGUM_2010_3_4_a0/