On complexity of a particular Boolean functions class
The Bulletin of Irkutsk State University. Series Mathematics, Tome 3 (2010) no. 4, pp. 2-6
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper concerns complexity of polynomial forms (exor-sum-of-products) representing Boolean functions. Complexity is defined as a minimal number of summands in exor-sum-of-products for a given function. A class of Boolean functions being the most complex among Boolean functions having 6 or less arguments is considered. The exact complexity for functions of described class having 7 agruments is obtained.
Keywords: boolean function, ESOP, exor-sum-of-products, operator, complexity.
Mots-clés : polynomial
@article{IIGUM_2010_3_4_a0,
     author = {S. F. Vinokurov and A. S. Kazimirov},
     title = {On complexity of a particular {Boolean} functions class},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {2--6},
     year = {2010},
     volume = {3},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2010_3_4_a0/}
}
TY  - JOUR
AU  - S. F. Vinokurov
AU  - A. S. Kazimirov
TI  - On complexity of a particular Boolean functions class
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2010
SP  - 2
EP  - 6
VL  - 3
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2010_3_4_a0/
LA  - ru
ID  - IIGUM_2010_3_4_a0
ER  - 
%0 Journal Article
%A S. F. Vinokurov
%A A. S. Kazimirov
%T On complexity of a particular Boolean functions class
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2010
%P 2-6
%V 3
%N 4
%U http://geodesic.mathdoc.fr/item/IIGUM_2010_3_4_a0/
%G ru
%F IIGUM_2010_3_4_a0
S. F. Vinokurov; A. S. Kazimirov. On complexity of a particular Boolean functions class. The Bulletin of Irkutsk State University. Series Mathematics, Tome 3 (2010) no. 4, pp. 2-6. http://geodesic.mathdoc.fr/item/IIGUM_2010_3_4_a0/

[1] A. S. Balyuk, “Nizhnyaya otsenka slozhnosti odnoi posledovatelnosti bulevykh funktsii v klasse polinomialnykh normalnykh form”, Sintez i slozhnost upravlyayuschikh sistem, materialy XII mezhdunar. shk.-seminara, v. 1, Izd-vo TsPI pri mekh.-mat. fak. MGU, M., 2001, 18–21

[2] S. F. Vinokurov, A. S. Kazimirov, “Perechislenie operatornykh klassov bulevykh funktsii”, Izv. Irkut. gos. un-ta. Ser.: Matematika, 2:2 (2009), 40–55

[3] K. D. Kirichenko, “Verkhnyaya otsenka slozhnosti polinomialnykh normalnykh form bulevykh funktsii”, Sintez i slozhnost upravlyayuschikh sistem, materialy XII mezhdunar. shk.-seminara, v. 1, Izd-vo TsPI pri mekh.-mat. fak. MGU, M., 2001, 115–120 | MR

[4] L. V. Ryabets, “Nakhozhdenie minimalnykh polinomov bulevykh funktsii s ispolzovaniem spetsialnoi operatornoi formy”, Tekhnologii Microsoft v teorii i praktike programmirovaniya, Novosibirsk, 2006, 215–217

[5] S. Even, I. Kohavi, A. Paz, “On minimal modulo 2 sums of products for switching function”, IEEE Trans. Elect. Comput., 1967, 671–674 | DOI | Zbl

[6] A. Gaidukov, “Algorithm to derive minimum ESOPs for 6-variable functions”, Proceedings of the 5th International Workshop on Boolean Problems 2002 (Freiberg, Germany, Sept. 19–20, 2002), 141–148

[7] N. Koda, T. Sasao, “An Upper Bound on the Number of Products in Minimum ESOPs”, Workshop in Application of the Reed-Muller Expansion Apllication in Circuit Design (Japan, 1995), 94–101 | Zbl