Variational maximum principle in the problem of optimal control of nonlinear wave processes
The Bulletin of Irkutsk State University. Series Mathematics, Tome 3 (2010) no. 3, pp. 105-117
Voir la notice de l'article provenant de la source Math-Net.Ru
We present necessary optimality condition in form of variational maximum principle for the problem of optimal control of nonlinear wave equation with nonlinear boundary conditions of first, second and third types.
Keywords:
optimal control, wave equation, variational maximum principle.
@article{IIGUM_2010_3_3_a9,
author = {V. A. Terletsky and E. A. Lutkovskaya},
title = {Variational maximum principle in the problem of optimal control of nonlinear wave processes},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {105--117},
publisher = {mathdoc},
volume = {3},
number = {3},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2010_3_3_a9/}
}
TY - JOUR AU - V. A. Terletsky AU - E. A. Lutkovskaya TI - Variational maximum principle in the problem of optimal control of nonlinear wave processes JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2010 SP - 105 EP - 117 VL - 3 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IIGUM_2010_3_3_a9/ LA - ru ID - IIGUM_2010_3_3_a9 ER -
%0 Journal Article %A V. A. Terletsky %A E. A. Lutkovskaya %T Variational maximum principle in the problem of optimal control of nonlinear wave processes %J The Bulletin of Irkutsk State University. Series Mathematics %D 2010 %P 105-117 %V 3 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IIGUM_2010_3_3_a9/ %G ru %F IIGUM_2010_3_3_a9
V. A. Terletsky; E. A. Lutkovskaya. Variational maximum principle in the problem of optimal control of nonlinear wave processes. The Bulletin of Irkutsk State University. Series Mathematics, Tome 3 (2010) no. 3, pp. 105-117. http://geodesic.mathdoc.fr/item/IIGUM_2010_3_3_a9/