Variational maximum principle in the problem of optimal control of nonlinear wave processes
The Bulletin of Irkutsk State University. Series Mathematics, Tome 3 (2010) no. 3, pp. 105-117

Voir la notice de l'article provenant de la source Math-Net.Ru

We present necessary optimality condition in form of variational maximum principle for the problem of optimal control of nonlinear wave equation with nonlinear boundary conditions of first, second and third types.
Keywords: optimal control, wave equation, variational maximum principle.
@article{IIGUM_2010_3_3_a9,
     author = {V. A. Terletsky and E. A. Lutkovskaya},
     title = {Variational maximum principle in the problem of optimal control of nonlinear wave processes},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {105--117},
     publisher = {mathdoc},
     volume = {3},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2010_3_3_a9/}
}
TY  - JOUR
AU  - V. A. Terletsky
AU  - E. A. Lutkovskaya
TI  - Variational maximum principle in the problem of optimal control of nonlinear wave processes
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2010
SP  - 105
EP  - 117
VL  - 3
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2010_3_3_a9/
LA  - ru
ID  - IIGUM_2010_3_3_a9
ER  - 
%0 Journal Article
%A V. A. Terletsky
%A E. A. Lutkovskaya
%T Variational maximum principle in the problem of optimal control of nonlinear wave processes
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2010
%P 105-117
%V 3
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIGUM_2010_3_3_a9/
%G ru
%F IIGUM_2010_3_3_a9
V. A. Terletsky; E. A. Lutkovskaya. Variational maximum principle in the problem of optimal control of nonlinear wave processes. The Bulletin of Irkutsk State University. Series Mathematics, Tome 3 (2010) no. 3, pp. 105-117. http://geodesic.mathdoc.fr/item/IIGUM_2010_3_3_a9/