Optimality condition and method of searching extreme points in ellipsoidal norm maximization problem
The Bulletin of Irkutsk State University. Series Mathematics, Tome 3 (2010) no. 3, pp. 93-104 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The ellipsoidal norm maximization problem on a convex set is considered in searching and improving the admissible points that satisfy the necessary condition of optimality. The sufficient optimality condition is presented with a special maximum function that is a value of projection type auxiliary problem. An iteration method oriented on improving the extreme points is constructed.
Keywords: compact convex set; norm maximization problem; improving the extreme points.
@article{IIGUM_2010_3_3_a8,
     author = {V. A. Srochko and N. S. Rozinova},
     title = {Optimality condition and method of searching extreme points in ellipsoidal norm maximization problem},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {93--104},
     year = {2010},
     volume = {3},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2010_3_3_a8/}
}
TY  - JOUR
AU  - V. A. Srochko
AU  - N. S. Rozinova
TI  - Optimality condition and method of searching extreme points in ellipsoidal norm maximization problem
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2010
SP  - 93
EP  - 104
VL  - 3
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2010_3_3_a8/
LA  - ru
ID  - IIGUM_2010_3_3_a8
ER  - 
%0 Journal Article
%A V. A. Srochko
%A N. S. Rozinova
%T Optimality condition and method of searching extreme points in ellipsoidal norm maximization problem
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2010
%P 93-104
%V 3
%N 3
%U http://geodesic.mathdoc.fr/item/IIGUM_2010_3_3_a8/
%G ru
%F IIGUM_2010_3_3_a8
V. A. Srochko; N. S. Rozinova. Optimality condition and method of searching extreme points in ellipsoidal norm maximization problem. The Bulletin of Irkutsk State University. Series Mathematics, Tome 3 (2010) no. 3, pp. 93-104. http://geodesic.mathdoc.fr/item/IIGUM_2010_3_3_a8/

[1] V. G. Antonik, V. A. Srochko, “Metod nelokalnogo uluchsheniya ekstremalnykh upravlenii v zadache na maksimum normy konechnogo sostoyaniya”, Zhurn. vychisl. matematiki i mat. fiziki, 49:5 (2009), 791–804 | MR | Zbl

[2] V. A. Srochko, S. N. Ushakova, “Metod skoreishego pod'ema v zadache maksimizatsii normy na strogo vypuklom mnozhestve”, Izv. IGU. Ser.: Matematika, 2:1 (2009), 233–244 | MR

[3] V. A. Srochko, S. N. Ushakova, “Uluchshenie ekstremalnykh upravlenii i metod skoreishego pod'ema v zadache maksimizatsii normy na mnozhestve dostizhimosti”, Zhurn. vychisl. matematiki i mat. fiziki, 50:5 (2010), 848–859 | MR | Zbl

[4] A. S. Strekalovskii, Elementy nevypukloi optimizatsii, Nauka, Novosibirsk, 2003, 356 pp.

[5] A. G. Sukharev, A. V. Timokhov, V. V. Fedorov, Kurs metodov optimizatsii, Nauka, M., 1986, 248 pp. | MR | Zbl

[6] F. H. Clarke, J. B. Hiriart-Urruty, Yu. S. Ledyaev, “On Global Optimality Conditions for Nonlinear Optimal Control Problems”, Journal of Global Optimization, 13 (1998), 109–122 | DOI | MR | Zbl

[7] R. Enkhbat, “On Some Theory, Methods and Algorithms for Concave Programming”, Optimization and Optimal Control, World Scientific Publishing Co, 2003, 79–102 | DOI | MR | Zbl