Investigation of population dynamics model by the methods of optimal control theory
The Bulletin of Irkutsk State University. Series Mathematics, Tome 3 (2010) no. 3, pp. 59-66 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider population dynamics model that takes into account resources competition between individuals with different adaptive characteristics. With the help of optimal control theory the dependence of distribution of individuals by trait on the correlation of competition intensity and the measure of resource distribution is investigated. For corresponding integro-differential optimal control problem we establish the necessary optimality condition and on its basis we construct a numerical solution method for the applied problem.
Keywords: population dynamics; optimal control of integro-differential system; differential principle of maximum; conditional gradient method; ravine method.
@article{IIGUM_2010_3_3_a5,
     author = {A. V. Bukina and Yu. S. Bukin},
     title = {Investigation of population dynamics model by the methods of optimal control theory},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {59--66},
     year = {2010},
     volume = {3},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2010_3_3_a5/}
}
TY  - JOUR
AU  - A. V. Bukina
AU  - Yu. S. Bukin
TI  - Investigation of population dynamics model by the methods of optimal control theory
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2010
SP  - 59
EP  - 66
VL  - 3
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2010_3_3_a5/
LA  - ru
ID  - IIGUM_2010_3_3_a5
ER  - 
%0 Journal Article
%A A. V. Bukina
%A Yu. S. Bukin
%T Investigation of population dynamics model by the methods of optimal control theory
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2010
%P 59-66
%V 3
%N 3
%U http://geodesic.mathdoc.fr/item/IIGUM_2010_3_3_a5/
%G ru
%F IIGUM_2010_3_3_a5
A. V. Bukina; Yu. S. Bukin. Investigation of population dynamics model by the methods of optimal control theory. The Bulletin of Irkutsk State University. Series Mathematics, Tome 3 (2010) no. 3, pp. 59-66. http://geodesic.mathdoc.fr/item/IIGUM_2010_3_3_a5/

[1] F. P. Vasilev, Chislennye metody resheniya ekstremalnykh zadach, Nauka, M., 1980, 520 pp. | MR

[2] T. Ya. Sitnikova, M. N. Shimaraev, “O glubokovodnykh «karlikakh» i «gigantakh» sredi baikalskikh endemichnykh gastropod”, Zhurn. obsch. biologii, 62:3 (2001), 226–238

[3] V. A. Terletskii, A. V. Bukina, “Variatsionnyi printsip maksimuma v zadache optimalnogo upravleniya integro-differentsialnoi sistemoi”, Vestn. Buryat. un-ta. Ser. 13, Matematika i informatika, 2008, no. 9, 52–55

[4] E. N. Tikhonova, R. M. Kamaltynov, “Morfologicheskii analiz baikalskikh amfipod Pallasea Cancellus iz reki Angary”, Byul. VSNTs SO RAMN, 2007, no. 1, 108–112

[5] A. A. Shirokaya, N. V. Maksimova, T. Ya. Sitnikova, “Raspredelenie mollyuskov semeistva ACROLOXIDAE (GASTROPODA, PULMONATA) v ozere Baikal”, Zool. zhurn., 87:5 (2008), 532–546

[6] U. Dieckmann, M. Doebeli, “On the origin of species by sympatric speciation”, Nature, 400 (1999), 354–357 | DOI

[7] M. Doebeli, U. Dieckmann, “Evolutionary branching and sympatric speciation caused by different types of ecological interactions”, Am. Nat., 156 (2006), 77–101