Investigation of population dynamics model by the methods of optimal control theory
The Bulletin of Irkutsk State University. Series Mathematics, Tome 3 (2010) no. 3, pp. 59-66
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider population dynamics model that takes into account resources competition between individuals with different adaptive characteristics. With the help of optimal control theory the dependence of distribution of individuals by trait on the correlation of competition intensity and the measure of resource distribution is investigated. For corresponding integro-differential optimal control problem we establish the necessary optimality condition and on its basis we construct a numerical solution method for the applied problem.
Keywords:
population dynamics; optimal control of integro-differential system; differential principle of maximum; conditional gradient method; ravine method.
@article{IIGUM_2010_3_3_a5,
author = {A. V. Bukina and Yu. S. Bukin},
title = {Investigation of population dynamics model by the methods of optimal control theory},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {59--66},
publisher = {mathdoc},
volume = {3},
number = {3},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2010_3_3_a5/}
}
TY - JOUR AU - A. V. Bukina AU - Yu. S. Bukin TI - Investigation of population dynamics model by the methods of optimal control theory JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2010 SP - 59 EP - 66 VL - 3 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IIGUM_2010_3_3_a5/ LA - ru ID - IIGUM_2010_3_3_a5 ER -
%0 Journal Article %A A. V. Bukina %A Yu. S. Bukin %T Investigation of population dynamics model by the methods of optimal control theory %J The Bulletin of Irkutsk State University. Series Mathematics %D 2010 %P 59-66 %V 3 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IIGUM_2010_3_3_a5/ %G ru %F IIGUM_2010_3_3_a5
A. V. Bukina; Yu. S. Bukin. Investigation of population dynamics model by the methods of optimal control theory. The Bulletin of Irkutsk State University. Series Mathematics, Tome 3 (2010) no. 3, pp. 59-66. http://geodesic.mathdoc.fr/item/IIGUM_2010_3_3_a5/