Extragradient methods for optimal control problems with linear restrictions
The Bulletin of Irkutsk State University. Series Mathematics, Tome 3 (2010) no. 3, pp. 2-20 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper contains the method for the optimal control problem regarding linear dynamic system. The iterative extragradient process is constructed. Convergence of the method is proved.
Keywords: optimal control, Lagrange function, extragradient method
Mots-clés : convergence.
@article{IIGUM_2010_3_3_a0,
     author = {A. S. Antipin and E. V. Horoshilova},
     title = {Extragradient methods for optimal control problems with linear restrictions},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {2--20},
     year = {2010},
     volume = {3},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2010_3_3_a0/}
}
TY  - JOUR
AU  - A. S. Antipin
AU  - E. V. Horoshilova
TI  - Extragradient methods for optimal control problems with linear restrictions
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2010
SP  - 2
EP  - 20
VL  - 3
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2010_3_3_a0/
LA  - ru
ID  - IIGUM_2010_3_3_a0
ER  - 
%0 Journal Article
%A A. S. Antipin
%A E. V. Horoshilova
%T Extragradient methods for optimal control problems with linear restrictions
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2010
%P 2-20
%V 3
%N 3
%U http://geodesic.mathdoc.fr/item/IIGUM_2010_3_3_a0/
%G ru
%F IIGUM_2010_3_3_a0
A. S. Antipin; E. V. Horoshilova. Extragradient methods for optimal control problems with linear restrictions. The Bulletin of Irkutsk State University. Series Mathematics, Tome 3 (2010) no. 3, pp. 2-20. http://geodesic.mathdoc.fr/item/IIGUM_2010_3_3_a0/

[1] A. S. Antipin, “Iterativnye metody prognoznogo tipa dlya vychisleniya nepodvizhnykh tochek ekstremalnykh otobrazhenii”, Izv. vuzov. Matematika, 1995, no. 11, 17–27 | MR | Zbl

[2] A. S. Antipin, “O differentsialnykh gradientnykh metodakh prognoznogo tipa dlya vychisleniya nepodvizhnykh tochek ekstremalnykh otobrazhenii”, Differents. uravneniya, 31:11 (1995), 1786–1795 | MR | Zbl

[3] A. S. Antipin, “Ravnovesnoe programmirovanie: metody gradientnogo tipa”, Avtomatika i telemekhanika, 1997, no. 8, 1337–1347 | MR | Zbl

[4] A. S. Antipin, “Ravnovesnoe programmirovanie: proksimalnye metody”, Zhurn. vychisl. matematiki i mat. fiziki, 37:11 (1997), 1327–1339 | MR | Zbl

[5] A. S. Antipin, “Upravlyaemye proksimalnye differentsialnye sistemy dlya resheniya sedlovykh zadach”, Differents. uravneniya, 28:11 (1992), 1846–1861 | MR | Zbl

[6] V. Boss, Lektsii po matematike. Differentsialnye uravneniya, Editorial URSS, M., 2004, 208 pp.

[7] V. Boss, Lektsii po matematike. Nelineinye operatory i nepodvizhnye tochki, Kn. dom LIBROKOM, M., 2010, 224 pp.

[8] O. V. Vasilev, A. V. Arguchintsev, Metody optimizatsii v zadachakh i uprazhneniyakh, Fizmatlit, M., 1999, 208 pp.

[9] F. P. Vasilev, Metody optimizatsii, Faktorial Press, M., 2002, 824 pp.

[10] Yu. G. Evtushenko, Metody resheniya ekstremalnykh zadach i ikh primenenie v sistemakh optimizatsii, Nauka, M., 1982, 432 pp. | MR | Zbl

[11] V. A. Srochko, Iteratsionnye metody resheniya zadach optimalnogo upravleniya, Fizmatlit, M., 2000, 160 pp.

[12] V. A. Trenogin, Funktsionalnyi analiz, Fizmatlit, M., 2002, 488 pp.