On solvability of essentially degenerate nonlinear algebraic differential system
The Bulletin of Irkutsk State University. Series Mathematics, Tome 3 (2010) no. 2, pp. 117-132

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider nonlinear system of ordinary differential equations, which is not solved with respect to the derivative of the desired vector function and identically degenerate in the domain of definition. Under the assumption that the initial data generate a solution of the maltiplicity grater than one for the corresponding finite-dimensional system, the process of transformation of the given system into the system in the normal form is suggested, the theorem of existence of a solution to a Cauchy problem is proved.
Keywords: algebraic differential system; differential algebraic equations; existence of solution; multiple solution.
@article{IIGUM_2010_3_2_a9,
     author = {A. A. Shcheglova},
     title = {On solvability of essentially degenerate nonlinear algebraic differential system},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {117--132},
     publisher = {mathdoc},
     volume = {3},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2010_3_2_a9/}
}
TY  - JOUR
AU  - A. A. Shcheglova
TI  - On solvability of essentially degenerate nonlinear algebraic differential system
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2010
SP  - 117
EP  - 132
VL  - 3
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2010_3_2_a9/
LA  - ru
ID  - IIGUM_2010_3_2_a9
ER  - 
%0 Journal Article
%A A. A. Shcheglova
%T On solvability of essentially degenerate nonlinear algebraic differential system
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2010
%P 117-132
%V 3
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIGUM_2010_3_2_a9/
%G ru
%F IIGUM_2010_3_2_a9
A. A. Shcheglova. On solvability of essentially degenerate nonlinear algebraic differential system. The Bulletin of Irkutsk State University. Series Mathematics, Tome 3 (2010) no. 2, pp. 117-132. http://geodesic.mathdoc.fr/item/IIGUM_2010_3_2_a9/