Keywords: classical solution, stabilization, the region of attraction, monotone operator, cone, lower and upper solutions, steam fixed point.
@article{IIGUM_2010_3_2_a6,
author = {G. A. Rudykh},
title = {Analysis of the stationary solutions for initial boundary value problem of nonlocal parabolic equation of plasma physics},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {61--87},
year = {2010},
volume = {3},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2010_3_2_a6/}
}
TY - JOUR AU - G. A. Rudykh TI - Analysis of the stationary solutions for initial boundary value problem of nonlocal parabolic equation of plasma physics JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2010 SP - 61 EP - 87 VL - 3 IS - 2 UR - http://geodesic.mathdoc.fr/item/IIGUM_2010_3_2_a6/ LA - ru ID - IIGUM_2010_3_2_a6 ER -
%0 Journal Article %A G. A. Rudykh %T Analysis of the stationary solutions for initial boundary value problem of nonlocal parabolic equation of plasma physics %J The Bulletin of Irkutsk State University. Series Mathematics %D 2010 %P 61-87 %V 3 %N 2 %U http://geodesic.mathdoc.fr/item/IIGUM_2010_3_2_a6/ %G ru %F IIGUM_2010_3_2_a6
G. A. Rudykh. Analysis of the stationary solutions for initial boundary value problem of nonlocal parabolic equation of plasma physics. The Bulletin of Irkutsk State University. Series Mathematics, Tome 3 (2010) no. 2, pp. 61-87. http://geodesic.mathdoc.fr/item/IIGUM_2010_3_2_a6/
[1] J. A. Carrilo, “On a non-local elliptic equation with decreasing nonlinearity arising in plasma physics and heat conduction”, Nonliear analysys TMA, 32 (1998), 97–115 | DOI
[2] A. Ferone, M. Jalal, J. Rakotoson, R. Volpicelli, “A topological approach for generalized nonlocal models for a confiner plasma in a tokamak”, Comm. Appl. Anal., 5:2 (2001), 159–181 | MR | Zbl
[3] J. Hyman, P. Rosenau, “Analysis of nonlinear parabolic equations modelling plasma diffusion across a magnetic field”, Lectures in Applied Mathematics, 23, 1986, 219–245 | MR | Zbl
[4] P. Rosenau, J. Hyman, “Plasma diffusion across a magnetic field”, Phys. D, 20 (1986), 444–446 | DOI | MR | Zbl
[5] P. Rosenau, E. Turkel, “Long time asymptotic of a system for plasma diffusion”, TTSP, 16:2–3 (1987), 377–391 | Zbl
[6] Y. Kwong, “Interior and boundary regularity of solutions to a plasma type equation”, Proc. Amer. Math. Soc., 104:2 (1988), 472–478 | DOI | MR | Zbl
[7] M. Bertsch, S. Kamin, “A system of degenerate parabolic equations from plasma physics: the large time behavior”, SIAM J. Math. Anal., 31:4 (2000), 776–790 | DOI | MR | Zbl
[8] A. S. Kalashnikov, “Nekotorye voprosy kachestvennoi teorii nelineinykh vyrozhdayuschikhsya parabolicheskikh uravnenii vtorogo poryadka”, UMN, 42:2 (1987), 135–176 | MR | Zbl
[9] O. A. Oleinik, A. S. Kalashnikov, Chzhou-Yui-Lin, “Zadacha Koshi i kraevye zadachi dlya uravnenii tipa nestatsionarnoi filtratsii”, Izv. AN SSSR. Ser. Mat., 22:5 (1958), 667–704 | MR | Zbl
[10] E. S. Sabinina, “Ob odnom klasse nelineinykh vyrozhdayuschikhsya parabolicheskikh uravnenii”, Dokl. AN SSSR, 143:4 (1962), 794–797 | MR | Zbl
[11] V. A. Galaktionov, V. A. Dorodnitsyn, G. G. Elenin, S. P. Kurdyumov, A. A. Samarskii, “Kvazilineinoe uravnenie teploprovodnosti: obostrenie, lokalizatsiya, simmetriya, tochnye resheniya, asimptotiki, struktury”, Sovrem. probl. matem. Noveishie dostizheniya. Itogi nauki i tekhniki, 28, VINITI AN SSSR, M., 1987, 95–205 | MR
[12] A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov, A. P. Mikhailov, Rezhimy s obostreniem v zadachakh dlya kvazilineinykh parabolicheskikh uravnenii, Nauka, M., 1987 | MR
[13] D. G. Aronson, “Regularity of flows in porous media: a survey”, Nonlinear Diffusion Equations and Their Equilibrium States I, Mathematical Sciences Research Institute Publications, 12, Springer, 1988, 35–49 | DOI | MR
[14] P. De Mottoni, A. Schiaffino, A. Tesei, “Attractivity properties of nonnegative solutions for a class of nonlinear degenerate parabolic problems”, Ann. Math. Pura Appl., 136 (1984), 35–48 | DOI | MR | Zbl
[15] D. G. Aronson, M. G. Crandall, L. A. Peletier, “Stabilization of solutions of a degenerate nonlinear diffusion problem”, Nonlinear Anal., TMA, 6:10 (1982), 1001–1022 | DOI | MR | Zbl
[16] J. Filo, “On solutions of a perturbed fast diffusion equation”, Aplikace matematicy, 32:5 (1987), 364–380 | MR | Zbl
[17] D. G. Aronson, L. A. Peletier, “Large time behavior of solutions of the porous medium equation in bounded domains”, J. Differ. Equat., 39:3 (1981), 378–412 | DOI | MR | Zbl
[18] M. Bertsch, “Asymptotic behavior of solutions of a nonlinear diffusion equation”, SIAM J. Appl. Math., 42:1 (1982), 66–76 | DOI | MR | Zbl
[19] V. S. Belonosov, T. I. Zelenyak, Nelokalnye problemy v teorii kvazilineinykh parabolicheskikh uravnenii, NGU, Novosibirsk, 1975 | MR
[20] T. I. Zelenyak, “O kachestvennykh svoistvakh reshenii kvazilineinykh smeshannykh zadach dlya uravnenii parabolicheskogo tipa”, Matem. sbornik, 104:3 (1977), 486–510 | MR
[21] A. A. Shestakov, Obobschennyi pryamoi metod Lyapunova dlya sistem s raspredelennymi parametrami, Nauka, M., 1990 | MR
[22] M. A. Krasnoselskii, Polozhitelnye resheniya operatornykh uravnenii, Fizmatgiz, M., 1962 | MR
[23] M. A. Krasnoselskii, G. M. Vainikko, P. P. Zabreiko, Ya. B. Rutitskii, V. Ya. Stetsenko, Priblizhennoe reshenie operatornykh uravnenii, Nauka, M., 1969 | MR
[24] D. Guo, V. Lakshmikantham, Nonlinear problems in abstract cones, Academic Press, London, 1988 | MR | Zbl
[25] S. I. Pokhozhaev, “Ob uravneniyakh vida $\Delta u=f(x,u,Du)$”, Matem. sbornik, 113:2 (1980), 324–338 | MR | Zbl
[26] S. I. Pokhozhaev, “Ob ellipticheskikh zadachakh v $R^{n}$ s superkriticheskim pokazatelem nelineinosti”, Matem. sbornik, 182:4 (1991), 467–489 | MR | Zbl
[27] E. Mitidieri, S. I. Pokhozhaev, “Apriornye otsenki i otsutstvie reshenii nelineinykh uravnenii i neravenstv v chastnykh proizvodnykh”, Tr. MIAN, 234, Nauka, M., 2001, 3–383 | MR
[28] E. Mitidieri, S. I. Pokhozhaev, “Liuvillevy teoremy dlya nekotorykh nelineinykh nelokalnykh zadach”, Dokl. RAN, 399:6 (2004), 732–736 | MR
[29] C. Bandle, “A priori estimates and the boundary value of solutions for a problem arising in plasma physics”, Nonl. Anal. TMA, 7:4 (1983), 439–451 | DOI | MR | Zbl
[30] J. Rakotoson, “Un modéle non local en physique des plasmas: résolution par une méthode de degré topologique”, Acta Appl. Math., 4:1 (1985), 1–14 | DOI | MR | Zbl
[31] V. Khatson, Dzh. Pim, Prilozheniya funktsionalnogo analiza i teorii operatorov, Mir, M., 1983 | MR
[32] A. Kufner, S. Fuchik, Nelineinye differentsialnye uravneniya, Nauka, M., 1988 | MR
[33] D. Gilbarg, N. Trudinger, Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989 | MR | Zbl
[34] N. V. Krylov, Lektsii po ellipticheskim i parabolicheskim uravneniyam v prostranstvakh Gëldera, Nauchnaya kniga, Novosibirsk, 1998 | MR
[35] D. Guo, V. Lakshmikantham, “Coupled fixed points of nonlinear operator with applications”, Nonlinear Anal., TMA, 11:5 (1987), 623–632 | DOI | MR | Zbl
[36] Dnestrovskii Yu. N., Kostomarov D. P., Matematicheskoe modelirovanie plazmy, Nauka, M., 1982
[37] Dzh. T. Khogan, “Mnogokomponentnye modeli perenosa v tokamake”, Vychislitelnye metody v fizike. Upravlyaemyi termoyadernyi sintez, Mir, M., 1980, 142–177
[38] V. P. Maslov, “Ob integralnom uravnenii $u(x)=F(x)+\int G(x,\xi)u_+^{k/2}(\xi) d\xi/\int u_+^{k/2}(\xi) d\xi$”, Funkts. analiz i ego prilozheniya, 28:1 (1994), 41–50 | MR | Zbl
[39] S. I. Pokhozhaev, “Ob uravneniyakh Maslova”, Differents. uravneniya, 31:2 (1995), 338–349 | MR | Zbl
[40] J. Wei, L. Zhang, “On a nonlinear eigenvalue problem”, Ann. Sc. norm. super Pisa. Cl. sci., 30:1 (2001), 41–61 | MR | Zbl
[41] V. S. Vladimirov, Uravneniya matematicheskoi fiziki, Nauka, M., 1981 | MR