Analysis of the stationary solutions for initial boundary value problem of nonlocal parabolic equation of plasma physics
The Bulletin of Irkutsk State University. Series Mathematics, Tome 3 (2010) no. 2, pp. 61-87 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The methods of nonlinear functional analysis, we study the properties stationary solutions of initial-boundary value problem for nonlinear nonlocal second order parabolic equation with implicit degeneration. This equation arises in the mathematical simulation of diffusion limited plasma across the magnetic field and its equilibrium configurations in the installation type tokamak. Problem of stabilization of nonstationary solutions to stationary reduced to study of the solvability of nonlinear boundary value problem with nonlocal (integral) operators. Sufficient conditions parameters studied integrodifferential boundary value problem ensure the existence and uniqueness of its classical solutions, for which structurally built area of attraction.
Mots-clés : nonlocal parabolic and elliptic equation
Keywords: classical solution, stabilization, the region of attraction, monotone operator, cone, lower and upper solutions, steam fixed point.
@article{IIGUM_2010_3_2_a6,
     author = {G. A. Rudykh},
     title = {Analysis of the stationary solutions for initial boundary value problem of nonlocal parabolic equation of plasma physics},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {61--87},
     year = {2010},
     volume = {3},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2010_3_2_a6/}
}
TY  - JOUR
AU  - G. A. Rudykh
TI  - Analysis of the stationary solutions for initial boundary value problem of nonlocal parabolic equation of plasma physics
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2010
SP  - 61
EP  - 87
VL  - 3
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2010_3_2_a6/
LA  - ru
ID  - IIGUM_2010_3_2_a6
ER  - 
%0 Journal Article
%A G. A. Rudykh
%T Analysis of the stationary solutions for initial boundary value problem of nonlocal parabolic equation of plasma physics
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2010
%P 61-87
%V 3
%N 2
%U http://geodesic.mathdoc.fr/item/IIGUM_2010_3_2_a6/
%G ru
%F IIGUM_2010_3_2_a6
G. A. Rudykh. Analysis of the stationary solutions for initial boundary value problem of nonlocal parabolic equation of plasma physics. The Bulletin of Irkutsk State University. Series Mathematics, Tome 3 (2010) no. 2, pp. 61-87. http://geodesic.mathdoc.fr/item/IIGUM_2010_3_2_a6/

[1] J. A. Carrilo, “On a non-local elliptic equation with decreasing nonlinearity arising in plasma physics and heat conduction”, Nonliear analysys TMA, 32 (1998), 97–115 | DOI

[2] A. Ferone, M. Jalal, J. Rakotoson, R. Volpicelli, “A topological approach for generalized nonlocal models for a confiner plasma in a tokamak”, Comm. Appl. Anal., 5:2 (2001), 159–181 | MR | Zbl

[3] J. Hyman, P. Rosenau, “Analysis of nonlinear parabolic equations modelling plasma diffusion across a magnetic field”, Lectures in Applied Mathematics, 23, 1986, 219–245 | MR | Zbl

[4] P. Rosenau, J. Hyman, “Plasma diffusion across a magnetic field”, Phys. D, 20 (1986), 444–446 | DOI | MR | Zbl

[5] P. Rosenau, E. Turkel, “Long time asymptotic of a system for plasma diffusion”, TTSP, 16:2–3 (1987), 377–391 | Zbl

[6] Y. Kwong, “Interior and boundary regularity of solutions to a plasma type equation”, Proc. Amer. Math. Soc., 104:2 (1988), 472–478 | DOI | MR | Zbl

[7] M. Bertsch, S. Kamin, “A system of degenerate parabolic equations from plasma physics: the large time behavior”, SIAM J. Math. Anal., 31:4 (2000), 776–790 | DOI | MR | Zbl

[8] A. S. Kalashnikov, “Nekotorye voprosy kachestvennoi teorii nelineinykh vyrozhdayuschikhsya parabolicheskikh uravnenii vtorogo poryadka”, UMN, 42:2 (1987), 135–176 | MR | Zbl

[9] O. A. Oleinik, A. S. Kalashnikov, Chzhou-Yui-Lin, “Zadacha Koshi i kraevye zadachi dlya uravnenii tipa nestatsionarnoi filtratsii”, Izv. AN SSSR. Ser. Mat., 22:5 (1958), 667–704 | MR | Zbl

[10] E. S. Sabinina, “Ob odnom klasse nelineinykh vyrozhdayuschikhsya parabolicheskikh uravnenii”, Dokl. AN SSSR, 143:4 (1962), 794–797 | MR | Zbl

[11] V. A. Galaktionov, V. A. Dorodnitsyn, G. G. Elenin, S. P. Kurdyumov, A. A. Samarskii, “Kvazilineinoe uravnenie teploprovodnosti: obostrenie, lokalizatsiya, simmetriya, tochnye resheniya, asimptotiki, struktury”, Sovrem. probl. matem. Noveishie dostizheniya. Itogi nauki i tekhniki, 28, VINITI AN SSSR, M., 1987, 95–205 | MR

[12] A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov, A. P. Mikhailov, Rezhimy s obostreniem v zadachakh dlya kvazilineinykh parabolicheskikh uravnenii, Nauka, M., 1987 | MR

[13] D. G. Aronson, “Regularity of flows in porous media: a survey”, Nonlinear Diffusion Equations and Their Equilibrium States I, Mathematical Sciences Research Institute Publications, 12, Springer, 1988, 35–49 | DOI | MR

[14] P. De Mottoni, A. Schiaffino, A. Tesei, “Attractivity properties of nonnegative solutions for a class of nonlinear degenerate parabolic problems”, Ann. Math. Pura Appl., 136 (1984), 35–48 | DOI | MR | Zbl

[15] D. G. Aronson, M. G. Crandall, L. A. Peletier, “Stabilization of solutions of a degenerate nonlinear diffusion problem”, Nonlinear Anal., TMA, 6:10 (1982), 1001–1022 | DOI | MR | Zbl

[16] J. Filo, “On solutions of a perturbed fast diffusion equation”, Aplikace matematicy, 32:5 (1987), 364–380 | MR | Zbl

[17] D. G. Aronson, L. A. Peletier, “Large time behavior of solutions of the porous medium equation in bounded domains”, J. Differ. Equat., 39:3 (1981), 378–412 | DOI | MR | Zbl

[18] M. Bertsch, “Asymptotic behavior of solutions of a nonlinear diffusion equation”, SIAM J. Appl. Math., 42:1 (1982), 66–76 | DOI | MR | Zbl

[19] V. S. Belonosov, T. I. Zelenyak, Nelokalnye problemy v teorii kvazilineinykh parabolicheskikh uravnenii, NGU, Novosibirsk, 1975 | MR

[20] T. I. Zelenyak, “O kachestvennykh svoistvakh reshenii kvazilineinykh smeshannykh zadach dlya uravnenii parabolicheskogo tipa”, Matem. sbornik, 104:3 (1977), 486–510 | MR

[21] A. A. Shestakov, Obobschennyi pryamoi metod Lyapunova dlya sistem s raspredelennymi parametrami, Nauka, M., 1990 | MR

[22] M. A. Krasnoselskii, Polozhitelnye resheniya operatornykh uravnenii, Fizmatgiz, M., 1962 | MR

[23] M. A. Krasnoselskii, G. M. Vainikko, P. P. Zabreiko, Ya. B. Rutitskii, V. Ya. Stetsenko, Priblizhennoe reshenie operatornykh uravnenii, Nauka, M., 1969 | MR

[24] D. Guo, V. Lakshmikantham, Nonlinear problems in abstract cones, Academic Press, London, 1988 | MR | Zbl

[25] S. I. Pokhozhaev, “Ob uravneniyakh vida $\Delta u=f(x,u,Du)$”, Matem. sbornik, 113:2 (1980), 324–338 | MR | Zbl

[26] S. I. Pokhozhaev, “Ob ellipticheskikh zadachakh v $R^{n}$ s superkriticheskim pokazatelem nelineinosti”, Matem. sbornik, 182:4 (1991), 467–489 | MR | Zbl

[27] E. Mitidieri, S. I. Pokhozhaev, “Apriornye otsenki i otsutstvie reshenii nelineinykh uravnenii i neravenstv v chastnykh proizvodnykh”, Tr. MIAN, 234, Nauka, M., 2001, 3–383 | MR

[28] E. Mitidieri, S. I. Pokhozhaev, “Liuvillevy teoremy dlya nekotorykh nelineinykh nelokalnykh zadach”, Dokl. RAN, 399:6 (2004), 732–736 | MR

[29] C. Bandle, “A priori estimates and the boundary value of solutions for a problem arising in plasma physics”, Nonl. Anal. TMA, 7:4 (1983), 439–451 | DOI | MR | Zbl

[30] J. Rakotoson, “Un modéle non local en physique des plasmas: résolution par une méthode de degré topologique”, Acta Appl. Math., 4:1 (1985), 1–14 | DOI | MR | Zbl

[31] V. Khatson, Dzh. Pim, Prilozheniya funktsionalnogo analiza i teorii operatorov, Mir, M., 1983 | MR

[32] A. Kufner, S. Fuchik, Nelineinye differentsialnye uravneniya, Nauka, M., 1988 | MR

[33] D. Gilbarg, N. Trudinger, Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989 | MR | Zbl

[34] N. V. Krylov, Lektsii po ellipticheskim i parabolicheskim uravneniyam v prostranstvakh Gëldera, Nauchnaya kniga, Novosibirsk, 1998 | MR

[35] D. Guo, V. Lakshmikantham, “Coupled fixed points of nonlinear operator with applications”, Nonlinear Anal., TMA, 11:5 (1987), 623–632 | DOI | MR | Zbl

[36] Dnestrovskii Yu. N., Kostomarov D. P., Matematicheskoe modelirovanie plazmy, Nauka, M., 1982

[37] Dzh. T. Khogan, “Mnogokomponentnye modeli perenosa v tokamake”, Vychislitelnye metody v fizike. Upravlyaemyi termoyadernyi sintez, Mir, M., 1980, 142–177

[38] V. P. Maslov, “Ob integralnom uravnenii $u(x)=F(x)+\int G(x,\xi)u_+^{k/2}(\xi) d\xi/\int u_+^{k/2}(\xi) d\xi$”, Funkts. analiz i ego prilozheniya, 28:1 (1994), 41–50 | MR | Zbl

[39] S. I. Pokhozhaev, “Ob uravneniyakh Maslova”, Differents. uravneniya, 31:2 (1995), 338–349 | MR | Zbl

[40] J. Wei, L. Zhang, “On a nonlinear eigenvalue problem”, Ann. Sc. norm. super Pisa. Cl. sci., 30:1 (2001), 41–61 | MR | Zbl

[41] V. S. Vladimirov, Uravneniya matematicheskoi fiziki, Nauka, M., 1981 | MR