The initial-finish value problem for the Boussinesque–Löve equation defined on graph
The Bulletin of Irkutsk State University. Series Mathematics, Tome 3 (2010) no. 2, pp. 18-29 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We investigate the initial-finish value problem for the Boussinesqe–Löve equation defined on graph by reducing it to the initial-finish value problem for the Sobolev type equation of the second order. We obtain theorems about the unique solvability of such problems.
Keywords: the Sobolev type equations, the phase space, the M,N-functions, the differential equations defined on graphs, the initial-finish value problem.
@article{IIGUM_2010_3_2_a2,
     author = {A. A. Zamyshlyaeva and A. V. Yuzeeva},
     title = {The initial-finish value problem for the {Boussinesque{\textendash}L\"ove} equation defined on graph},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {18--29},
     year = {2010},
     volume = {3},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2010_3_2_a2/}
}
TY  - JOUR
AU  - A. A. Zamyshlyaeva
AU  - A. V. Yuzeeva
TI  - The initial-finish value problem for the Boussinesque–Löve equation defined on graph
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2010
SP  - 18
EP  - 29
VL  - 3
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2010_3_2_a2/
LA  - ru
ID  - IIGUM_2010_3_2_a2
ER  - 
%0 Journal Article
%A A. A. Zamyshlyaeva
%A A. V. Yuzeeva
%T The initial-finish value problem for the Boussinesque–Löve equation defined on graph
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2010
%P 18-29
%V 3
%N 2
%U http://geodesic.mathdoc.fr/item/IIGUM_2010_3_2_a2/
%G ru
%F IIGUM_2010_3_2_a2
A. A. Zamyshlyaeva; A. V. Yuzeeva. The initial-finish value problem for the Boussinesque–Löve equation defined on graph. The Bulletin of Irkutsk State University. Series Mathematics, Tome 3 (2010) no. 2, pp. 18-29. http://geodesic.mathdoc.fr/item/IIGUM_2010_3_2_a2/

[1] S. A. Zagrebina, “O zadache Shouoltera–Sidorova”, Izv. vuzov. Matematika, 2007, no. 3, 22–28 | MR | Zbl

[2] A. A. Zamyshlyaeva, “Fazovye prostranstva odnogo klassa lineinykh uravnenii sobolevskogo tipa vtorogo poryadka”, Vychislit. tekhnologii, 8:4 (2003), 45–54 | Zbl

[3] A. V. Keller, “Chislennoe reshenie zadachi startovogo upravleniya dlya sistemy uravnenii leontevskogo tipa”, Obozrenie priklad. i prom. matematiki, 16:2 (2009), 345–346

[4] N. A. Manakova, “Zadacha optimalnogo upravleniya dlya uravneniya Oskolkova nelineinoi filtratsii”, Differents. uravneniya, 43:9 (2007), 1185–1192 | MR | Zbl

[5] Yu. V. Pokornyi, O. M. Penkin, V. L. Pryadiev, Differentsialnye uravneniya na geometricheskikh grafakh, Fizmatlit, M., 2004 | Zbl

[6] G. A. Sviridyuk, “Uravneniya sobolevskogo tipa na grafakh”, Neklassicheskie uravneniya matematicheskoi fiziki, Novosibirsk, 2002, 221–225 | Zbl

[7] G. A. Sviridyuk, V. V. Shemetova, “Fazovoe prostranstvo odnoi neklassicheskoi modeli”, Izv. vuzov. Matematika, 2005, no. 11, 47–52 | MR

[8] Dzh. Uizem, Lineinye i nelineinye volny, Mir, M., 1977 | MR

[9] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev type equations and degenerate semigroups of operators, VSP, Utrecht–Boston–Köln–Tokyo, 2003 | MR | Zbl