On block difference schemes for differential algebraic equations
The Bulletin of Irkutsk State University. Series Mathematics, Tome 3 (2010) no. 2, pp. 2-12 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, block difference schemes for numerical solution of the initial value problems in linear differential algebraic equations are proposed. The detailed analysis of such schemes of the first and second order have been studied using modal examples. It has been shown that the schemes considered possess some advatnages when compared with known implicit first and second order methods. A description for the general form of block difference schemes has been given.
Keywords: differential-algebraic equations, index, block difference schemes.
@article{IIGUM_2010_3_2_a0,
     author = {M. V. Bulatov and L. S. Solovarova},
     title = {On block difference schemes for differential algebraic equations},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {2--12},
     year = {2010},
     volume = {3},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2010_3_2_a0/}
}
TY  - JOUR
AU  - M. V. Bulatov
AU  - L. S. Solovarova
TI  - On block difference schemes for differential algebraic equations
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2010
SP  - 2
EP  - 12
VL  - 3
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2010_3_2_a0/
LA  - ru
ID  - IIGUM_2010_3_2_a0
ER  - 
%0 Journal Article
%A M. V. Bulatov
%A L. S. Solovarova
%T On block difference schemes for differential algebraic equations
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2010
%P 2-12
%V 3
%N 2
%U http://geodesic.mathdoc.fr/item/IIGUM_2010_3_2_a0/
%G ru
%F IIGUM_2010_3_2_a0
M. V. Bulatov; L. S. Solovarova. On block difference schemes for differential algebraic equations. The Bulletin of Irkutsk State University. Series Mathematics, Tome 3 (2010) no. 2, pp. 2-12. http://geodesic.mathdoc.fr/item/IIGUM_2010_3_2_a0/

[1] E. Khairer, G. Vanner, Reshenie obyknovennykh differentsialnykh uravnenii. Zhestkie i differentsialno-algebraicheskie zadachi, Mir, M., 1999; Наука, М., 1964

[2] K. E. Brenan, S. B. Campbell, L. R. Petzold, Numerical solution of initial-value problems in differential-algebraic equations, North Holland, New York, 1989 | MR | Zbl

[3] M. V. Bulatov, V. F. Chistyakov, “Ob usloviyakh skhodimosti raznostnykh skhem dlya sistem ODU, ne razreshennykh otnositelno proizvodnykh”, Metody chislennogo analiza i optimizatsii, Nauka, Novosibirsk, 1987, 175–187 | MR

[4] M. V. Bulatov, “Numerical solution of differential-algebraic equations by block methods”, Computational Science, ICCS 2003, v. 2, Springer Verlag, 516–522 | MR | Zbl

[5] V. F. Chistyakov, Algebro-differentsialnye operatory s konechnomernym yadrom, Nauka, Novosibirsk, 1996 | MR

[6] M. V. Bulatov, V. F. Chistyakov, “Ob odnom chislennom metode resheniya differentsialno-algebraicheskikh uravnenii”, Zhurn. vychisl. matem. i mat. fiziki, 42:4 (2002), 459–470 | MR | Zbl

[7] V. A. Danilov, V. F. Chistyakov, O prepyatstviyakh na puti postroeniya effektivnykh chislennykh metodov resheniya algebro-differentsialnykh sistem, Preprint No 5, IrVTs SO AN SSSR, Irkutsk, 1990

[8] R. März, “Differential-algebraic systems anew”, Appllied Numer. Math., 42 (2002), 315–335 | DOI | MR | Zbl

[9] P. Kunkel, V. Mehrmann, “Stability properties of differential-algebraic equations and spin-stabilized diskretizations”, Electr. Trans. Numer. Anal., 26 (2007), 385–420 | MR | Zbl