Branching solutions of nonlinear differential equations of $n$-th order
The Bulletin of Irkutsk State University. Series Mathematics, Tome 3 (2010) no. 1, pp. 92-103
Voir la notice de l'article provenant de la source Math-Net.Ru
Analytical theory of branching solutions of nonlinear equations and theory of differential equations with singular point are employed for construction of solutions of differential equations of $n$-th order in the neighborhood of branching points.
Keywords:
nonlinear differential equations, Newton diagram, Jordan forms, branching.
@article{IIGUM_2010_3_1_a9,
author = {N. A. Sidorov and D. N. Sidorov},
title = {Branching solutions of nonlinear differential equations of $n$-th order},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {92--103},
publisher = {mathdoc},
volume = {3},
number = {1},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2010_3_1_a9/}
}
TY - JOUR AU - N. A. Sidorov AU - D. N. Sidorov TI - Branching solutions of nonlinear differential equations of $n$-th order JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2010 SP - 92 EP - 103 VL - 3 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IIGUM_2010_3_1_a9/ LA - ru ID - IIGUM_2010_3_1_a9 ER -
%0 Journal Article %A N. A. Sidorov %A D. N. Sidorov %T Branching solutions of nonlinear differential equations of $n$-th order %J The Bulletin of Irkutsk State University. Series Mathematics %D 2010 %P 92-103 %V 3 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IIGUM_2010_3_1_a9/ %G ru %F IIGUM_2010_3_1_a9
N. A. Sidorov; D. N. Sidorov. Branching solutions of nonlinear differential equations of $n$-th order. The Bulletin of Irkutsk State University. Series Mathematics, Tome 3 (2010) no. 1, pp. 92-103. http://geodesic.mathdoc.fr/item/IIGUM_2010_3_1_a9/