Branching solutions of nonlinear differential equations of $n$-th order
The Bulletin of Irkutsk State University. Series Mathematics, Tome 3 (2010) no. 1, pp. 92-103 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Analytical theory of branching solutions of nonlinear equations and theory of differential equations with singular point are employed for construction of solutions of differential equations of $n$-th order in the neighborhood of branching points.
Keywords: nonlinear differential equations, Newton diagram, Jordan forms, branching.
@article{IIGUM_2010_3_1_a9,
     author = {N. A. Sidorov and D. N. Sidorov},
     title = {Branching solutions of nonlinear differential equations of $n$-th order},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {92--103},
     year = {2010},
     volume = {3},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2010_3_1_a9/}
}
TY  - JOUR
AU  - N. A. Sidorov
AU  - D. N. Sidorov
TI  - Branching solutions of nonlinear differential equations of $n$-th order
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2010
SP  - 92
EP  - 103
VL  - 3
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2010_3_1_a9/
LA  - ru
ID  - IIGUM_2010_3_1_a9
ER  - 
%0 Journal Article
%A N. A. Sidorov
%A D. N. Sidorov
%T Branching solutions of nonlinear differential equations of $n$-th order
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2010
%P 92-103
%V 3
%N 1
%U http://geodesic.mathdoc.fr/item/IIGUM_2010_3_1_a9/
%G ru
%F IIGUM_2010_3_1_a9
N. A. Sidorov; D. N. Sidorov. Branching solutions of nonlinear differential equations of $n$-th order. The Bulletin of Irkutsk State University. Series Mathematics, Tome 3 (2010) no. 1, pp. 92-103. http://geodesic.mathdoc.fr/item/IIGUM_2010_3_1_a9/

[1] V. A. Trenogin, Funktsionalnyi analiz, Fizmatlit, M., 2007, 488 pp.

[2] N. P. Erugin, Kniga dlya chteniya po obschemu kursu differentsialnykh uravnenii, Nauka i tekhnika, Minsk, 1972, 663 pp. | MR | Zbl

[3] E. A. Koldington, N. Levinson, Teoriya obyknovennykh differentsialnykh uravnenii, IL, M., 1958, 474 pp.

[4] M. M. Vainberg, V. A. Trenogin, Teoriya vetvleniya reshenii nelineinykh uravnenii, Nauka, M., 1969, 529 pp. | MR

[5] N. Sidorov, B. Loginov, A. Sinitsyn, M. Falaleev, Lyapunov–Schmidt methods in nonlnear analysis and applications, Kluwer Academic Publ., Dordrecht, 2002, 547 pp. | MR | Zbl

[6] N. B. Abdallah, P. Degond, F. Méhats, Mathematical models of magnetic insulation, Rapport interne, No 97.20, MIP, Universite Poul Sabatier, Toulouse, France, 1997

[7] N. A. Sidorov, “O vetvlenii reshenii differentsialnykh uravnenii s vyrozhdeniem”, Differents. uravneniya, 9:8 (1973), 1464–1481 | MR | Zbl

[8] Bryuno A. D., Stepennaya geometriya v algebraicheskikh i differentsialnykh uravneniyakh, Fizmatlit, M., 1998, 288 pp. | MR | Zbl

[9] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev type equations and degenerate semigroups of operators, VSP, Utrecht, 2003, 228 pp. | MR | Zbl