Branching solutions of nonlinear differential equations of $n$-th order
The Bulletin of Irkutsk State University. Series Mathematics, Tome 3 (2010) no. 1, pp. 92-103

Voir la notice de l'article provenant de la source Math-Net.Ru

Analytical theory of branching solutions of nonlinear equations and theory of differential equations with singular point are employed for construction of solutions of differential equations of $n$-th order in the neighborhood of branching points.
Keywords: nonlinear differential equations, Newton diagram, Jordan forms, branching.
@article{IIGUM_2010_3_1_a9,
     author = {N. A. Sidorov and D. N. Sidorov},
     title = {Branching solutions of nonlinear differential equations of $n$-th order},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {92--103},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2010_3_1_a9/}
}
TY  - JOUR
AU  - N. A. Sidorov
AU  - D. N. Sidorov
TI  - Branching solutions of nonlinear differential equations of $n$-th order
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2010
SP  - 92
EP  - 103
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2010_3_1_a9/
LA  - ru
ID  - IIGUM_2010_3_1_a9
ER  - 
%0 Journal Article
%A N. A. Sidorov
%A D. N. Sidorov
%T Branching solutions of nonlinear differential equations of $n$-th order
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2010
%P 92-103
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIGUM_2010_3_1_a9/
%G ru
%F IIGUM_2010_3_1_a9
N. A. Sidorov; D. N. Sidorov. Branching solutions of nonlinear differential equations of $n$-th order. The Bulletin of Irkutsk State University. Series Mathematics, Tome 3 (2010) no. 1, pp. 92-103. http://geodesic.mathdoc.fr/item/IIGUM_2010_3_1_a9/