Matrix fundamental operator-function of singular differential operator of high order in terms of the spectral bounded
The Bulletin of Irkutsk State University. Series Mathematics, Tome 3 (2010) no. 1, pp. 30-35

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper a matrix fundamental operator-function for a singular differential operator $\left(B\delta^{(N)}(t)-\Lambda A\delta(t)\right)$ is build. Here operator $A$ is spectral bounded relatively $B$. The formulas for the generalized solution of the corresponding Cauchy problem are got.
Keywords: Banach space, matrix fundamental operator-function, spectral bounded.
@article{IIGUM_2010_3_1_a2,
     author = {O. V. Korobova},
     title = {Matrix fundamental operator-function of singular differential operator of high order in terms of the spectral bounded},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {30--35},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2010_3_1_a2/}
}
TY  - JOUR
AU  - O. V. Korobova
TI  - Matrix fundamental operator-function of singular differential operator of high order in terms of the spectral bounded
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2010
SP  - 30
EP  - 35
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2010_3_1_a2/
LA  - ru
ID  - IIGUM_2010_3_1_a2
ER  - 
%0 Journal Article
%A O. V. Korobova
%T Matrix fundamental operator-function of singular differential operator of high order in terms of the spectral bounded
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2010
%P 30-35
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIGUM_2010_3_1_a2/
%G ru
%F IIGUM_2010_3_1_a2
O. V. Korobova. Matrix fundamental operator-function of singular differential operator of high order in terms of the spectral bounded. The Bulletin of Irkutsk State University. Series Mathematics, Tome 3 (2010) no. 1, pp. 30-35. http://geodesic.mathdoc.fr/item/IIGUM_2010_3_1_a2/