Matrix fundamental operator-function of singular differential operator of high order in terms of the spectral bounded
The Bulletin of Irkutsk State University. Series Mathematics, Tome 3 (2010) no. 1, pp. 30-35 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper a matrix fundamental operator-function for a singular differential operator $\left(B\delta^{(N)}(t)-\Lambda A\delta(t)\right)$ is build. Here operator $A$ is spectral bounded relatively $B$. The formulas for the generalized solution of the corresponding Cauchy problem are got.
Keywords: Banach space, matrix fundamental operator-function, spectral bounded.
@article{IIGUM_2010_3_1_a2,
     author = {O. V. Korobova},
     title = {Matrix fundamental operator-function of singular differential operator of high order in terms of the spectral bounded},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {30--35},
     year = {2010},
     volume = {3},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2010_3_1_a2/}
}
TY  - JOUR
AU  - O. V. Korobova
TI  - Matrix fundamental operator-function of singular differential operator of high order in terms of the spectral bounded
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2010
SP  - 30
EP  - 35
VL  - 3
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2010_3_1_a2/
LA  - ru
ID  - IIGUM_2010_3_1_a2
ER  - 
%0 Journal Article
%A O. V. Korobova
%T Matrix fundamental operator-function of singular differential operator of high order in terms of the spectral bounded
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2010
%P 30-35
%V 3
%N 1
%U http://geodesic.mathdoc.fr/item/IIGUM_2010_3_1_a2/
%G ru
%F IIGUM_2010_3_1_a2
O. V. Korobova. Matrix fundamental operator-function of singular differential operator of high order in terms of the spectral bounded. The Bulletin of Irkutsk State University. Series Mathematics, Tome 3 (2010) no. 1, pp. 30-35. http://geodesic.mathdoc.fr/item/IIGUM_2010_3_1_a2/

[1] N. Sidorov, B. Loginov, A. Sinitsyn, M. Falaleev, Lyapunov–Schmidt Methods in Nonlinear Analysis and Applications, Kluwer Academic Publishers, Dordrecht, 2002, 548 pp. | MR | Zbl

[2] M. V. Falaleev, “Fundamentalnye operator-funktsii singulyarnykh differentsialnykh operatorov v banakhovykh prostranstvakh”, Sib. mat. zhurn., 41:5 (2000), 1167–1182 | MR | Zbl

[3] M. V. Falaleev, E. Yu. Grazhdantseva, “Fundamentalnye operator-funktsii singulyarnykh differentsialnykh operatorov v usloviyakh spektralnoi ogranichennosti”, Differents. uravneniya, 42:6 (2006), 769–774 | MR | Zbl

[4] M. V. Falaleev, O. V. Korobova, “Sistemy differentsialnykh uravnenii s vyrozhdeniem v banakhovykh prostranstvakh”, Sib. mat. zhurn., 49:4 (2008), 916–927 | MR | Zbl

[5] O. V. Korobova, “Singulyarnye sistemy differentsialnykh uravnenii vysokogo poryadka v banakhovykh prostranstvakh”, Tez. dokl. 3-i mezhdunar. konf., posvyasch. 85-letiyu chl.-kor. RAN, prof. L. D. Kudryavtseva, MFTI, M., 2008, 281–282

[6] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht–Boston, 2003 | MR | Zbl

[7] G. A. Sviridyuk, “K obschei teorii polugrupp operatorov”, Uspekhi mat. nauk, 49:4 (1994), 47–74 | MR | Zbl

[8] F. R. Gantmakher, Teoriya matrits, Nauka, M., 1966, 576 pp. | MR

[9] V. S. Vladimirov, Obobschennye funktsii v matematicheskoi fizike, Nauka, M., 1979, 320 pp. | MR