Towards an innovation theory of spatial Brownian motion under boundary conditions.
Georgian Mathematical Journal, Tome 8 (2001) no. 2, pp. 297-306.

Voir la notice de l'article provenant de la source European Digital Mathematics Library

Keywords: set-parametric Brownian motion, Doob-Meyer decomposition, set-parametric Brownian bridge, innovation process, Volterra operators
@article{GMJ_2001__8_2_49840,
     author = {Khmaladze, E.},
     title = {Towards an innovation theory of spatial {Brownian} motion under boundary conditions.},
     journal = {Georgian Mathematical Journal},
     pages = {297--306},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2001},
     zbl = {1007.60033},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/GMJ_2001__8_2_49840/}
}
TY  - JOUR
AU  - Khmaladze, E.
TI  - Towards an innovation theory of spatial Brownian motion under boundary conditions.
JO  - Georgian Mathematical Journal
PY  - 2001
SP  - 297
EP  - 306
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/GMJ_2001__8_2_49840/
LA  - en
ID  - GMJ_2001__8_2_49840
ER  - 
%0 Journal Article
%A Khmaladze, E.
%T Towards an innovation theory of spatial Brownian motion under boundary conditions.
%J Georgian Mathematical Journal
%D 2001
%P 297-306
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/GMJ_2001__8_2_49840/
%G en
%F GMJ_2001__8_2_49840
Khmaladze, E. Towards an innovation theory of spatial Brownian motion under boundary conditions.. Georgian Mathematical Journal, Tome 8 (2001) no. 2, pp. 297-306. http://geodesic.mathdoc.fr/item/GMJ_2001__8_2_49840/